
Computer Architecture Probe
Yi Zhao, Yuxia Yao | Computer Science Serior Project | Supervised by Professor Olivier Marin

Background
 In the course of Computer Architecture, we studied how a modern
computer works through multiple layers of interface, connecting both
hardware and software. In order to study the layers that usually work
“behind the scene” of real computers, students turn to graphical
simulators to observe the interaction between components. Most
simulators focus on one particular layer. While such tools help grasp the
theoretical concepts of particular layers, they fail in helping students
master translation between two layers of interface, not to mention the
relations of the internal layers themselves. Hence, there is a need for a
graphical simulator that illustrates the operation of all layers during
program execution, starting from a high-level programming language to
its most elementary components (transistors, resistors, capacitors).

Design
�e project Computer Architecture Probe (CAP) is a graphical
simulator of all layers of the computer architecture based on MIPS.
Given a user-input code in C language, CAP translates it into
Assembly Instruction Codes (AIC) using Compiler Explorer API. �en
it simulates and renders the output in microarchitecture, gate,
intermediate and transistor layer. �e web-based application is
light-weight and thus avoids problems like installation and distribution.
�e simulator is programmed in Object-Oriented method.

�e User Interface design consists of three panels: a code editor on the
top left, a panel for the assembly language on the bottom left, and the
simulator on the right. Below the panels is a bar of progress controller
with four buttons, Assemble, Step Forward, Step Back and Reset. After
assembling their code, users then could press Step Forward button to
observe step-by-step simulation in every layer. In the
simulation panel, only one layer shows at one time but users can scroll
mouse to switch between layers. �e assembly code in execution is
marked yellow, and the activated datapaths in the simulator is
highlighted with its output value.

 Online Compiler

User Interface

Decode assembly language
in text form

Render active datapath and value

Compute results for Register
File, Data Memory, ALU etc.

Handle user input

�e 4th level reveals a conventional design of a full adder in transistor
level. A full adder takes three binary input a, b and a carry-in and calcu-
lates the sum and carry-out. �e green lines represent current �ow. De-
pending on the input, individual transistors will be on or o�. In this spe-
ci�c example, this full adder sums a=0 and b=1, with a carry-in=0.

sum

carry-out

Details

�e 3rd layer gives a diagram of a 4-bit additon block in gate level. It is
the very last four bits taken from a 32-bit carry lookahead adder that
computes carry-out indepent of the result to achieve a faster calculation.
�e path is highlighted in cyan when its value is 1.

Structure

Reference
�e existing computer architecture simulators listed below have de-
monstrable achievements in education, though they hardly cover the
simulation over all the layers. Building on their advantage, the Com-
puter Architecture Probe is designed to be graphical and web-based
for the sake of completeness, user-friendliness and accessibility.

�e 2nd layer shows ALU component in gate level. It takes inputs A and
B and generates the result based on a 3-digit ALU Control Code. Data-
paths are highlighted only if their data count toward the calculation.

�e 1st layer is an overview of all microarchitecture components in a
single-cycle MIPS processor. �e input is a 32-bit instruction code.
Datapaths are highlighted only if their data count toward the calculation.
In this example, it is executing addiu $sp, $sp, -24.

