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Abstract 
The breakdown value is a measure of the worst-case robustness proper-
ties of an estimator. It represents the smallest number of observations 
that can be sent to arbitrary values that will result in a parameter 
estimate becoming infinitely large in absolute value. In regression mod-
eling, the meaningful measure is the conditional breakdown, in which 
predictor values are taken as given and fixed, and response values are 
sent to infinity. Least squares (LS)-based methods generally have a 
breakdown of 1 observation, the smallest possible value, reflecting their 
lack of robustness. 

It is known that regression based on least absolute deviations (LAD) 
has higher conditional breakdown than do LS-based methods. In this 
paper, we examine the conditional breakdown properties of the robust 
regression method LAD-LASSO, a regularization method that e↵ec-
tively performs variable selection by setting specific slopes to zero based 
on a specified regularization parameter  while also attempting to be re-
sistant to unusual observations. By formulating the LAD-LASSO prob-
lem as a linear program, we are able to use an enumerative algorithm 
to calculate the conditional breakdown of LAD-LASSO for a given data 
set. We find that the breakdown depends on several things, including 
 and the specific values of the predictors (as would be expected), but 
also on how and whether variables are centered and scaled. We also find 
that using LAD-LASSO to choose the predictors with nonzero slopes, 
and then fitting LAD on those predictors, can improve the breakdown 
considerably. 

0.1 Introduction 
It is well-known that many estimators, particularly ones based on least 
squares, are not robust, being sensitive to the e↵ects of unusual ob-
servations (outliers and leverage points). One measure of robustness is 
the breakdown value, the smallest number of observations that can be 
sent to arbitrary values that will result in a parameter estimate becom-
ing infinitely large in absolute value (a closely-related measure is the 
breakdown point, which is the breakdown value divided by the sample 
size, and thus refers to the smallest proportion of observations that 
can be sent to arbitrary values that will result in a parameter estimate 
becoming infinitely large in absolute value). This is a worst-case per-
formance measure, as it is based on observations being set to the most 
disadvantageous values possible. 

Consider a standard linear regression situation, in which the data 
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constitute a sample of n observations {xi, yi}, with  xi being a p-
dimensional vector. The model assumes 

yi =  0 +  1x1i + · · ·+  pxpi + " i, 

where " is an n-dimensional error vector. The predictors xi are taken as 
given and fixed, so the appropriate breakdown value is the conditional 
breakdown value, in which only response values are allowed to become 
infinite. It is well-known that the least squares estimator ̂OLS , which  
minimizes 

nX 

i=1 

(yi  [ 0 +  1x1i + · · ·+  pxpi])
2 , 

has a breakdown value of 1 observation, the smallest possible value. 
Least absolute deviations (LAD) regression is an alternative regres-

sion method that is more resistant to outliers. The LAD estimator ̂LAD 

minimizes 
nX 

i=1 

|yi  [ 0 +  1x1i + · · ·+  pxpi]|. (1) 

[8] showed that the breakdown value of ̂LAD can be determined via 
mixed-integer programming, and showed that, depending on the con-
figuration of predictor values, it can be considerably larger than 1. 

In recent years, the problem of fitting regression models with large 
numbers of potential predictors has become increasingly important. A 
popular approach to this problem has been through the use of reg-
ularization methods, in which the usual estimation criterion (sum of 
squared or sum of absolute residuals) is penalized with a term that 
forces estimated regression slopes to 0. The LASSO estimator, intro-
duced by [17], minimizes 

nX 

i=1 

(yi  [ 0 +  1x1i + · · ·+  pxpi])
2 +  

pX 

j=1 

| j|. 

Depending on the choice of , the LASSO slope estimates are either 
forced to equal 0 (e↵ectively acting as a variable selection method) or 
shrunk towards zero. Unfortunately, since the LASSO criterion is still 
based on least squares, the estimator is not robust, with a breakdown 
value of 1. 

In order to overcome this weakness, [18] proposed applying regular-
ization to LAD regression, resulting in the LAD-LASSO, which mini-
mizes 

nX 

i=1 

|yi  [ 0 +  1x1i + · · ·+  pxpi]|+  
pX 

j=1 

| j|. 
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Various authors have examined the asymptotic properties of the LAD-
LASSO and generalizations (including allowing for di↵erent values of 
 for di↵erent predictors), including [18], [6], [4], [20], and [19]. 

Despite its motivation as a method resistant to unusual observations, 
there has been relatively little study of the robustness properties of 
LAD-LASSO (notable exceptions include [15], [1], and [3]). In this chap-
ter, we study the breakdown properties of the estimator, demonstrating 
that it can achieve better (sometimes considerably better) breakdown 
value than that of LASSO. In Section 0.2 we describe the estimator in 
more detail. In Section 0.3 we discuss how determining the breakdown 
value of the method can be formulated as a mixed-integer programming 
problem. Section 0.4 addresses di↵erent implementations of the LAD-
LASSO, including versions based on centering and/or scaling the pre-
dictors. In Section 0.5 we illustrate the calculations of breakdown values 
of LAD-LASSO methods on several well-known data sets, showing how 
the breakdown value depends on the choice of  and how and whether 
variables are centered and scaled. We further show how using LAD-
LASSO as a variable selection method to choose the predictors with 
nonzero slopes, and then fitting LAD on those predictors (a method 
closely related to the relaxed LAD-LASSO proposed in [12]), can im-
prove the breakdown considerably. We conclude the chapter with dis-
cussion of potential future work, including the incorporation of weights 
to improve the breakdown value further. 

0.2 LAD regression, LAD-LASSO, and linear 
programming 

The LAD regression problem described in equation (1) can be formu-
lated and solved as a linear program (c.f. [7]). Specifically, let 

y = 

0 

B@ 

y1 
. . . 
yn 

1 

CA , X = 

0 

B@ 

1 x11 . . .  . . .  xp1 
. . . 

. . . 
1 x1n . . .  . . .  xpn 

1 

CA = 

0 

B@ 

x 1 

. . . 
x n 

1 

CA . 

Next, let ri = yi  [0 + 1x1i + · · · + pxpi] and since the sum of 
the absolute values of each of the residuals is to be minimized, let 
r+ 
i
 r 

i = ri, where  r+ 
i
 0 and r 

i  0. The LAD regression problem 
as an optimization problem is to determine the regression coecients 
that minimize 

P 
|ri|, which is equivalent to minimizing 

P 
r+ 
i
+r 

i , since  
for any i, setting both r+ 

i
> 0 and r 

i > 0 will necessarily increase the 
value of the objective function. Thus, the LAD regression problem can 
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be formulated as 

min e T
n r

+ + e T
n r

 

s.t. X + r+  r = y 
 free, r+ 0, r 0 

(2) 

where the vector of residuals is r = r +  r  , and e T 
n is a vector with all 

n components equal to 1. The LAD-LASSO problem can be formulated 
as a nonlinear optimization problem by changing the objective function 
in the linear program (2) from e T 

n r 
+ + e T

n
r  to e T

n
r + + e T

n r 
 + e T 

p
||. 

However, by setting  = +  − , the objective function of the LAD-
LASSO problem can be made into the linear function e T

n r 
+ + e T 

n r
 + 

 e T 
p 

+ +  e T
p 

 , since if for some j  + 
j

> 0 and   
j

> 0, the LAD-
LASSO objective function would be increased. Thus, the LAD-LASSO 
problem can be formulated as the following linear program: 

min e T
n r

+ + e T
n r

 + e T
p 

+ + e T
p 

 

s.t. X+  X + r+  r = y 
+  0,   0, r+  0, r  0. 

(3) 

However, as will be discussed further below, we would like to take 
a di↵erent approach, by formulating the LAD-LASSO problem as an 
LAD regression problem with an augmented design matrix and response 
vector. To do so we first reformulate the linear program in equation (3) 
as 

min e T
n r

+ + e T
n r

 + e T
p c

+ + e T
p c

 

s.t. X + r+  r = y 
 + c+  c = 0  
 free, c+  0, c  0, r+  0, r  0, 

(4) 

where e T+ + e T = e Tc+ + e T c since  = c+  c 
p p p p . Next, we 

note that by defining an augmented design matrix X⇤ and augmented 
response vector y⇤ , the LAD-LASSO linear program in equation (4) 
can be formulated as an LAD regression problem with design matrix 
X⇤ and response vector y⇤ . Specifically, 

0 1 

, (5)y ⇤ = 

BBBBBBBBBBBB@ 

y1 
. . . 
yn 

0 
0 
. . . 

0 

CCCCCCCCCCCCA 

, X⇤ = 

0 

BBBBBBBBBB@ 

1 x11 . . .  . . .  xp1 
. . . 

. . . 
1 x1n . . .  . . .  xpn 

0  0 . . .  0 
0 0  0 
. . . 

. . . 
. . . 

. . . 
0 0 . . .  0  

1 

CCCCCCCCCCA 

= 

0 

B@ 

x ⇤1 

. . . 
x ⇤n+p 

1 

CA 
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with the LAD-LASSO problem formulated as the LAD regression prob-
lem in linear programming form as 

min e T 
n r

+ + e T 
n r

 

s.t. X⇤ + r+  r = y ⇤ 

 free, r+  0, r  0. 
(6) 

The fact that the LAD-LASSO problem can be formulated as a linear 
program solving an LAD regression problem with an augmented design 
matrix and augmented response vector is important for two reasons. 
First, as we demonstrate in the next section, the computational meth-
ods of the breakdown value of LAD regression are heavily based upon 
the LAD regression problem being a linear program. Hence, the LAD-
LASSO breakdown value can be computed in a similar manner to that 
of computing the breakdown value of LAD regression, since it is LAD 
regression with di↵erent data. Second, there is an important property 
of LAD-LASSO that can be easily seen from its linear programming for-
mulation and solution. Recognizing that the design matrix and y vector 
for LAD-LASSO in equation (5) are (n+ p) ⇥ (p+ 1) and (n+ p) ⇥ 1 
respectively, Proposition 2 in [7] describes that an optimal solution to 
the LAD-LASSO regression problem is of the form 

̂LAD = X⇤1 
B y 

⇤ 
B
, 

where X⇤ 
B is some nonsingular (p+ 1) ⇥ (p+ 1) submatrix of X⇤ and 

y⇤ 
B the associated rows of the response vector. In the event that the 

rows in X⇤ 
B are only among the first n rows, then ̂LAD will have p+1  

nonzero values. On the other hand, any row of X⇤ 
B that comes from 

the last p rows of X⇤ will have associated ̂LAD values set to 0. 

0.3 Determining the breakdown value of LAD-

LASSO 
Consider the LAD estimated regression parameters ̂LAD based on data 
(X,y). If we contaminate m (1  m < n) values of the response vector 
y in a way so that row i is replaced by (xi , ỹi), we obtain some new data 
(X, ỹ). The LAD estimated regression parameters applied to (X, ỹ) are 
di↵erent from the original ones. We can use any norm k · k on Rp to 
measure the distance k̂LAD(X, ỹ)̂LADk of the respective estimates. 
If we vary over all possible choices, then this distance remains either 
bounded or not bounded. Let 

b(m,y|X) = sup  
ỹ 

k̂LAD(X, ỹ)  ̂LAD(X,y)k 
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be the maximum bias that results when we replace at most m of the 
original values of the dependent variable yi with arbitrary new data. 

The conditional breakdown value of LAD regression is 

a(y|X) =  min  
1m<n 

⇢ 

m : b(m,y|X) is  infinite  

 

; 

i.e., it is the minimum number of values of y that, if replaced with 
arbitrary new data, make the LAD regression technique break down. 

[8] show that the conditional breakdown value of LAD regression 
can be computed by solving the following mixed-integer program when 
the design matrix X is in general position: 

min 
nX 

i=1 

ui + li = a(y|X) (7a) 

s.t. x ⇠ + ⌘ ⌘ + si ti = 0 for i = 1, . . . , n, i  +       (7b) 

si  Mui  0, ti  Mli  0 for i = 1, . . . , n,      (7c) 

⌘+ 
i
+ ⌘

i
+ Mui + Mli  M for i = 1, . . . , n,    (7d) 

ui + li  1 for i = 1, . . . , n,   (7e) 
nX 

i=1 

⌘+ 
i + ⌘ 

i  si  ti  0, 
nX 

i=1 

si + ti  ", (7f) 

⇠ free, ⌘+  0, ⌘  0, s  0, t  0, (7g) 

ui, li 2 {0, 1} for i = 1, . . . , n  (7h) 

where we assume that M is a suitably chosen large number and " a 
small number so that constraints (7c) and (7d) are nonbinding for the 
solution that results if we set ui or li equal to 1 or ui = li = 0. 

[13] and [14] provide an enumerative approach to computing the 
conditional breakdown of LAD regression. [8] show that this approach 
provides the same value as the mixed-integer program (when the design 
matrix is in general position) and [9] describe the enumerative approach 
through a linear programming framework. Let N = {1, . . . , n} and 
E ✓ N}. Then  a(y|X) =  |E| where |E| is the smallest integer such 
that P 

i 

max i2E |x ⇠|P 
i2N |xi⇠|  

1 

2
, 

where 

⇠ = 

✓ 
1 0 
XB 

◆1 ✓ 
 
0 

◆ 

, 

 is a positive constant and the algorithm enumerates through all (p)⇥ 
(p+ 1) submatrices XB of X. 
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To compute the breakdown value of the LAD-LASSO regression 
problem described in equation (6), we use the enumerative approach 
described above with X substituted with X⇤ and y substituted with 
y⇤ . The reason for this is the mixed-integer programming approach is 
based upon a design matrix that is in general position and the design 
matrix X⇤ is not necessarily in general position, resulting in incorrect 
breakdown values. 

In the next section, we describe the numerical experiments that we 
conducted in order to explore the breakdown values of di↵erent versions 
of the LAD-LASSO algorithm. In particular, one of the approaches con-
sidered is where the original design matrix and response vectors are cen-
tered. This has been a popular approach to constructing LASSO-type 
estimators, because it avoids the need to di↵erentiate in the objective 
function the intercept coecient (which is not shrunk to zero) and the 
slope coecients (which are). Instead, the intercept term is removed 
through centering the response and predictor variables (since the OLS 
fit based on predictors at their sample mean values equals the sample 
mean of the response), the LASSO is fit based on a model without an 
intercept, and the intercept is then added back in at the end. In such 
a case, the LAD-LASSO regression estimates are determined by first 
solving an LAD regression problem where there is no intercept or con-
stant term. In such a case, the augmented design matrix used will be 
p⇥ (n+ p) as opposed to (p+1)⇥ (n+ p) and will be of the form (with 
centering and possibly scaling) 

y 
0 

= 

0 

BBBBBBBBBBBB@ 

y1 
. . . 
yn 

0 
0 
. . . 

0 

1 

CCCCCCCCCCCCA 

, X 
0 

= 

0 

BBBBBBBBBB@ 

x11 . . .  . . .  xp1 
. . . 

. . . 
x1n . . .  . . .  xpn 

 0 . . .  0 
0  0 
. . . 

. . . 
. . . 

. . . 
0 . . .  0  

1 

CCCCCCCCCCA 

= 

0 

B@ 

x 
0 1 

. . . 
x 

0 
n+p 

1 

CA . (8) 

We note that the conditional breakdown value of the formulation 
of the LAD-LASSO regression problem is a lower bound on the LAD-
LASSO method. This is because the algorithm used to compute the 
breakdown value permits potential contamination in the response vec-
tor described in equation (5) and equation (8). In other words, the 
breakdown calculation assumes that contamination can take place in 
the entire response vector, including the 0 values corresponding to the 
LASSO constraints, where in reality such contamination would not take 
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place (since those entries do not correspond to real data values). Hence, 
we also compute the breakdown value of the LAD regression problem on 
the columns that have nonzero estimated LAD-LASSO parameters. In 
such a case, if any centering had been performed on the design matrix 
(as described in the next section), when computing the breakdown value 
of the LAD regression problem on the columns that have nonzero esti-
mated LAD-LASSO parameters, the original un-centered columns were 
used including a constant/intercept. Since this breakdown computation 
is for a traditional LAD regression, either the enumerative approach or 
the mixed-integer programming approach can be used, and the MIP 
optimizer Gurobi was used to solve any mixed-integer programs. 

0.4 Numerical experiments 
Besides the two aforementioned approaches for computing the break-
down value (LAD-LASSO problem vs. remaining columns approach), 
we now describe the seven approaches considered for computing the 
breakdown values. The reason for these di↵erent approaches is due to 
the discussions in the literature regarding (i) whether a constant term 
should be explicitly estimated by the LAD-LASSO or if the design 
matrix and response vector should be centered, and (ii) whether the 
data should be scaled before estimating LAD-LASSO parameters, in 
order to make all of the slopes on the same scale, thereby avoiding 
the problem of the penalty term in the LASSO objective function po-
tentially being dominated by individual predictor(s) simply because of 
their scale. In each of the seven approaches below, we compute the 
breakdown value of both the LAD-LASSO problem and the resulting 
remaining columns after LAD-LASSO is performed (a method closely 
related to the relaxed LAD-LASSO proposed in [12]). Specifically, the 
seven approaches in terms of the design matrix X⇤ or X 

0 

are as follows: 

1. Estimate the breakdown value of the direct LAD-LASSO regres-
sion problem. In other words, compute the breakdown value of 
the LAD regression with augmented design matrix and response 
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vector described in equation (5), 

y ⇤ = 

0 

BBBBBBBBBBBB@ 

y1 
. . . 
yn 

0 
0 
. . . 

0 

1 

CCCCCCCCCCCCA 

, X⇤ = 

0 

BBBBBBBBBB@ 

1 x11 . . .  . . .  xp1 
. . . 

. . . 
1 x1n . . .  . . .  xpn 

0  0 . . .  0 
0 0  0 
. . . 

. . . 
. . . 

. . . 
0 0 . . .  0  

1 

CCCCCCCCCCA 

. 

2. Center the response vector and columns of the design matrix by 
using their respective sample means. We note that the constant 
term or intercept will no longer be directly computed by the LAD-
LASSO linear program. This results in an augmented design ma-
trix and response vector as described in equation (8), 

y 
0 

= 

0 

BBBBBBBBBBBB@ 

y 
0 

1 
. . . 
y

0 

n 

0 
0 
. . . 

0 

1 

CCCCCCCCCCCCA 

, X 
0 

= 

0 

BBBBBBBBBB@ 

x 
0 

11 . . .  . . .  x  
0 

p1 
. . . 

. . . 
x 

0 

1n . . .  . . .  x  
0 

pn 

 0 . . .  0 
0  0 
. . . 

. . . 
. . . 

. . . 
0 . . .  0  

1 

CCCCCCCCCCA 

, 

where 

yi 
0 

= yi  µ̂(y), where µ̂(y) =  
1 

n 

nX 

i=1 

yi 

x
0 

ji = xji  µ̂(xj), where µ̂(xj) =  
1 

n 

nX 

i=1 

xji 

3. Center the response vector and columns of the design matrix by 
using their respective sample medians. We note that the con-
stant term or intercept will no longer be directly computed by 
the LAD-LASSO linear program. This results in an augmented 
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design matrix and response vector as described in equation (8), 

0 1 

y 
0 

= 

BBBBBBBBBBBB@ 

y 
0 

1 
. . . 
y

0 

n 

0 
0 
. . . 

0 

CCCCCCCCCCCCA 

, X 
0 

= 

0 

BBBBBBBBBB@ 

x 
0 

11 . . .  . . .  x  
0 

p1 
. . . 

. . . 
x 

0 

1n . . .  . . .  x  
0 

pn 

 0 . . .  0 
0  0 
. . . 

. . . 
. . . 

. . . 
0 . . .  0  

1 

CCCCCCCCCCA 

, 

where 

yi 
0 

= yi  m(y), where m(y) is the median of y 

x
0 

ji = xji  m(xj), where m(xj) is the median of xj. 

4. Scale the columns of the design matrix by their respective stan-
dard deviations and estimate the breakdown value of the direct 
LAD-LASSO regression problem. In other words, compute the 
breakdown value of the LAD regression with augmented design 
matrix and response vector described in equation (5), 

y ⇤ = 

BBBBBBBBBBBB@ 

y1 
. . . 
yn 

0 
0 
. . . 

0 

CCCCCCCCCCCCA 

, X⇤ = 

0 

BBBBBBBBBB@ 

1 x 
0 

11 . . .  . . .  x  
0 

p1 
. . . 

. . . 
1 x 

0 

1n . . .  . . .  x  
0 

pn 

0  0 . . .  0 
0 0  0 
. . . 

. . . 
. . . 

. . . 
0 0 . . .  0  

1 

CCCCCCCCCCA 

, 

0 1 

where the scaling of the predictor variables is computed as 

x
0 

ji = 
xji 

̂(xj)
, where ̂(xj) =  

uut 1 

n 

nX 

i=1 

 
xji  µ̂(xj) 

2 
v 

5. Scale the columns of the design matrix by their respective mean 
absolute deviation from the sample median and estimate the 
breakdown value of the direct LAD-LASSO regression problem. 
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In other words, compute the breakdown value of the LAD regres-
sion with augmented design matrix and response vector described 
in equation (5), 

y ⇤ = 

BBBBBBBBBBBB@ 

y1 
. . . 
yn 

0 
0 
. . . 

0 

CCCCCCCCCCCCA 

, X⇤ = 

0 

BBBBBBBBBB@ 

1 x 
0 

11 . . .  . . .  x  
0 

p1 
. . . 

. . . 
1 x 

0 

1n . . .  . . .  x  
0 

pn 

0  0 . . .  0 
0 0  0 
. . . 

. . . 
. . . 

. . . 
0 0 . . .  0  

1 

CCCCCCCCCCA 

, 

0 1 

where the scaling of the predictor variables is computed as 

x
0 

ji = 
xji 

̂(xj)
, where ̂(xj) =  

1 

n 

nX 

i=1 

 xji  m(xj) 
 

6. Center the response vector and columns of the design matrix by 
using their respective sample means, and scale the columns of the 
design matrix by their respective standard deviations. We note 
that the constant term or intercept will no longer be directly 
computed by the LAD-LASSO linear program. This results in 
an augmented design matrix and response vector as described in 
equation (8), 

y 
0 

= 

BBBBBBBBBBBB@ 

y 
0 

1 
. . . 
y

0 

n 

0 
0 
. . . 

0 

CCCCCCCCCCCCA 

, X 
0 

= 

0 

BBBBBBBBBB@ 

x 
0 

11 . . .  . . .  x  
0 

p1 
. . . 

. . . 
x 

0 

1n . . .  . . .  x  
0 

pn 

 0 . . .  0 
0  0 
. . . 

. . . 
. . . 

. . . 
0 . . .  0  

1 

CCCCCCCCCCA 

, 

0 1 

where 

yi 
0 

= yi  µ̂(y), where µ̂(y) =  
1 

n 

nX 

i=1 

yi 

x
0 

ji = 
xji  µ̂(xj) 

̂(xj) 
, where µ̂(xj) =  

1 

n 

nX 

i=1 

xji 
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and 

̂(xj) =  

vuut 1 

n 

nX 

i=1 

 
xji  µ̂(xj) 

2 
. 

7. Center the response vector and columns of the design matrix by 
using their respective sample medians, and scale the columns of 
the design matrix by their respective mean absolute deviations. 
We note that the constant term or intercept will no longer be di-
rectly computed by the LAD-LASSO linear program. This results 
in an augmented design matrix and response vector as described 
in equation (8), 

y 
0 

= 

0 

BBBBBBBBBBBB@ 

y 
0 

1 
. . . 
y

0 

n 

0 
0 
. . . 

0 

1 

CCCCCCCCCCCCA 

, X 
0 

= 

0 

BBBBBBBBBB@ 

x 
0 

11 . . .  . . .  x  
0 

p1 
. . . 

. . . 
x 

0 

1n . . .  . . .  x  
0 

pn 

 0 . . .  0 
0  0 
. . . 

. . . 
. . . 

. . . 
0 . . .  0  

1 

CCCCCCCCCCA 

, 

where 

yi = yi  m(y), where m(y) is the median of y 
0 

x
0 

ji = 
xji  m(xj) 

̂(xj) 
, where m(xj) is the median of xj 

and 

̂(xj) =  
1 

n 

nX 

i=1 

 xji  m(xj) 
 . 

0.5 Examples of breakdown values of LAD-

LASSO-based methods 
In this section we illustrate the calculation and interpretation of break-
down values for various data sets that have appeared in the robust-
ness literature. The data sets used are the aircraft data, coleman data, 
Hawkins-Bradu-Kass (HBK) data, salinity data, and the modified wood 
gravity data. Each of these data sets can be found and is discussed in 
[16]. 
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For each data set, we produce a three-panel figure of breakdown val-
ues (Figures 1 – 5). The top panel plots breakdown values versus the 
number of active (nonzero slope) predictors over a range of  values, 
for the direct LAD-LASSO (L-L), the relaxed LAD-LASSO (RL-L), 
the versions obtained by estimating the intercept indirectly based on 
centering variables with sample means (L-L (mean) and RL-L (mean), 
respectively), and the versions obtained by estimating the intercept 
indirectly based on centering variables with sample medians (L-L (me-
dian) and RL-L (median), respectively). The breakdown value of LAD 
(which corresponds to that of L-L with  = 0) is given by an aster-
isk. The middle panel presents breakdown values when scaling pre-
dictors nonrobustly using sample standard deviations (and centering 
using means when estimating the intercept indirectly), and the bottom 
panel presents breakdown values when scaling predictors robustly using 
sample mean absolute deviations (and centering using medians when 
estimating the intercept indirectly). 

The aircraft data (Figure 1) illustrate the general patterns. From the 
top panel we see that LAD-LASSO tends to have similar breakdown 
value to LAD itself when the chosen  leads to all predictors being 
active, but as more slopes are driven to zero, its breakdown value stays 
the same or decreases. Distinctions between direct determination of L-L 
and indirectly fitting the intercept are minor, and perhaps surprisingly, 
centering robustly using medians isn’t any more e↵ective than doing so 
using means. 

On the other hand, using the LAD-LASSO to determine the number 
of active predictors, but then using LAD on those predictors to estimate 
the coecients (the relaxed LAD-LASSO) can make a di↵erence, and 
the fewer the number of active predictors, the higher the breakdown 
value can go. Presumably this is reflecting the fact that if a variable 
is inactive, changes in its values can no longer a↵ect the estimated 
coecients, thereby making it easier to avoid breakdown. 

The breakdown properties related to scaling are less clear, but 
once again we see that relaxed LAD-LASSO outperforms LAD-LASSO. 
When scaling nonrobustly using standard deviations, the RL-L meth-
ods again tend to gain e↵ectiveness as the number of active predictors 
decreases. Perhaps more surprisingly, the RL-L results when scaling 
robustly using mean absolute deviations are much more unstable, with 
breakdown values sometimes higher and sometimes lower than those 
using nonrobust scaling, and breakdown values counterintuitively some-
times being lower when there are fewer active predictors. 

The patterns are similar for the coleman data (Figure 2) and the 
wood data (Figure 3). The other two data sets exhibit somewhat dif-
ferent behavior. When applied to the HBK data, the relaxed LASSOs 
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Figure 1: Breakdown values for aircraft data. 
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Figure 2: Breakdown values for coleman data. 
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Figure 3: Breakdown values for wood data. 
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Figure 4: Breakdown values for HBK data. 
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don’t improve on the breakdown from their original L-L method. Fur-
ther, indirectly estimating the intercept by centering using the mean 
results in far higher breakdown values for L-L than any other method. 
We speculate that this could be because fourteen observations in the 
data set were artificially created to be leverage points that mask each 
other, with very unusual predictor values relative to the others. When 
centering using the median, these points are still recognized as unusual, 
and LAD is a↵ected by them, but when centering by the mean, they 
are no longer unusual, and their e↵ects on LAD are accordingly less. 
This notion is only of limited applicability, however, because scaling 
using the nonrobust standard deviation (while still centering using the 
mean) results in the lowest breakdown values of any method. 

The salinity data occupies a somewhat middle position compared to 
the others. The RL-L methods still generally improve on breakdown as 
the number of active predictors becomes fewer, but centering can result 
in higher breakdown values for L-L methods for more active predictors. 
Further, while RL-L methods can also improve breakdown when scaling 
variables, scaling L-L methods (either robust or nonrobust) sometimes 
have higher breakdown and sometimes have lower breakdown. 

It is important to remember what these results mean. The calcu-
lated breakdown values are based on an already-specified value of . 
In practice, this value would be chosen in a data-dependent way, and 
unusual observations could a↵ect that choice in unanticipated ways. 
Thus, we cannot say that a particular method, applied to data sets 
with specific values in a data-dependent way, would lead to better per-
formance. What we can say, however, is that apparently the breakdown 
properties of LAD-LASSO tend to mirror those of LAD itself, and be-
come worse for choices of  that lead to fewer active predictors. This 
tendency, however, can be mitigated by applying LAD to those data 
sets with fewer predictors (i.e., constructed RL-L estimates), which can 
result in often noticeable improvements in breakdown. 

0.6 Conclusion and future work 
In this chapter we have illustrated how the worst-case robustness of the 
LAD-LASSO method can be examined through determination of the 
breakdown value for a given data set and specified choice of the regu-
larization parameter , and how using a version of the relaxed LAD-
LASSO can sometimes improve the breakdown considerably. A natural 
next question is to wonder if the (relaxed) LAD-LASSO method can 
be modified to improve the breakdown further. [9] and [10] showed how 
weights can be chosen to produce a weighted LAD (WLAD) estima-
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Figure 5: Breakdown values for salinity data. 
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tor that can increase the breakdown of LAD regression; it would be 
interesting to see if a similar improvement can be made in construct-
ing WLAD-LASSO methods. Several authors have proposed versions 
of WLAD-LASSO (for example, [2], [5], and [11]), and it would be in-
teresting to explore the breakdown properties of those methods as well. 
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	The Conditional Breakdown Properties of LAD-LASSO Regression 
	Abstract 
	The breakdown value is a measure of the worst-case robustness proper-ties of an estimator. It represents the smallest number of observations that can be sent to arbitrary values that will result in a parameter estimate becoming infinitely large in absolute value. In regression mod-eling, the meaningful measure is the conditional breakdown, in which predictor values are taken as given and fixed, and response values are sent to infinity. Least squares (LS)-based methods generally have a breakdown of 1 observa
	0.1 Introduction 
	It is well-known that many estimators, particularly ones based on least squares, are not robust, being sensitive to the e↵ects of unusual ob-servations (outliers and leverage points). One measure of robustness is the breakdown value, the smallest number of observations that can be sent to arbitrary values that will result in a parameter estimate becom-ing infinitely large in absolute value (a closely-related measure is the breakdown point, which is the breakdown value divided by the sample size, and thus re
	constitute a sample of n observations {xi,yi},with xi being a p-dimensional vector. The model assumes 
	yi =  0+  1x1i + ···+  pxpi + " i, 
	where " is an n-dimensional error vector. The predictors xi are taken as given and fixed, so the appropriate breakdown value is the conditional breakdown value, in which only response values are allowed to become infinite. It is well-known that the least squares estimator ˆOLS ,which minimizes 
	nX i=1 (yi  [ 0+  1x1i + ···+  pxpi])2 , 
	has a breakdown value of 1 observation, the smallest possible value. Least absolute deviations (LAD) regression is an alternative regres-sion method that is more resistant to outliers. The LAD estimator ˆLAD minimizes 
	nX i=1 |yi  [ 0+  1x1i + ···+  pxpi]|. 
	(1) 
	[8] showed that the breakdown value of ˆLAD can be determined via mixed-integer programming, and showed that, depending on the con-figuration of predictor values, it can be considerably larger than 1. In recent years, the problem of fitting regression models with large numbers of potential predictors has become increasingly important. A popular approach to this problem has been through the use of reg-ularization methods, in which the usual estimation criterion (sum of squared or sum of absolute residuals) 
	nX i=1 (yi  [ 0+  1x1i + ···+  pxpi])2 + pX j=1 | j|. 
	Depending on the choice of , the LASSO slope estimates are either forced to equal 0 (e↵ectively acting as a variable selection method) or shrunk towards zero. Unfortunately, since the LASSO criterion is still based on least squares, the estimator is not robust, with a breakdown value of 1. In order to overcome this weakness, [18] proposed applying regular-ization to LAD regression, resulting in the LAD-LASSO, which mini-mizes 
	nX i=1 |yi  [ 0+  1x1i + ···+  pxpi]|+  pX j=1 | j|. 
	Various authors have examined the asymptotic properties of the LAD-LASSO and generalizations (including allowing for di↵erent values of  for di↵erent predictors), including [18], [6], [4], [20], and [19]. Despite its motivation as a method resistant to unusual observations, there has been relatively little study of the robustness properties of LAD-LASSO (notable exceptions include [15], [1], and [3]). In this chap-ter, we study the breakdown properties of the estimator, demonstrating that it can achieve be
	0.2 LAD regression, LAD-LASSO, and linear programming 
	The LAD regression problem described in equation (1) can be formu-lated and solved as a linear program (c.f. [7]). Specifically, let 
	y= 0 B@ y1 . . . yn 1 CA, X= 0 B@ 1 x11 ... ... xp1 . . . . . . 1 x1n ... ... xpn 1 CA= 0 B@ x 1 . . . x n 1 CA. 
	Next, let ri = yi  [0 + 1x1i + ···+ pxpi] and since the sum of the absolute values of each of the residuals is to be minimized, let r+ i r i = ri,where r+ i 0 and r i  0. The LAD regression problem as an optimization problem is to determine the regression coecients that minimize P |ri|, which is equivalent to minimizing P r+ i+r i ,since for any i, setting both r+ i> 0 and r i > 0 will necessarily increase the value of the objective function. Thus, the LAD regression problem can 
	be formulated as 
	min e Tn r+ +e Tn r s.t. X + r+ r =y  free, r+ 0, r 0 
	(2) 
	where the vector of residuals is r = r +  r  , and e T n is a vector with all n components equal to 1. The LAD-LASSO problem can be formulated as a nonlinear optimization problem by changing the objective function in the linear program (2) from e T n r + + e Tnr  to e Tnr + + e Tn r  + e T p||. However, by setting  = +   , the objective function of the LAD-LASSO problem can be made into the linear function e Tn r + + e T n r +  e T p + +  e Tp  , since if for some j  + j> 0 and   j> 0, th
	min e Tn r+ +e Tn r + e Tp + + e Tp  s.t. X+  X +r+ r =y +  0,   0, r+  0, r  0. 
	(3) 
	However, as will be discussed further below, we would like to take a di↵erent approach, by formulating the LAD-LASSO problem as an LAD regression problem with an augmented design matrix and response vector. To do so we first reformulate the linear program in equation (3) as 
	min e Tn r+ +e Tn r +e Tp c+ +e Tp c s.t. X + r+ r =y  + c+ c =0  free, c+  0, c  0, r+  0, r  0, 
	(4) 
	where e T+ + e T = e Tc+ + e T c since  = c+  c p p p p . Next, we note that by defining an augmented design matrix X⇤ and augmented response vector y⇤ , the LAD-LASSO linear program in equation (4) can be formulated as an LAD regression problem with design matrix X⇤ and response vector y⇤ . Specifically, 
	01 , (5)y ⇤ = BBBBBBBBBBBB@ y1 . . . yn 0 0 . . . 0 CCCCCCCCCCCCA , X⇤ = 0 BBBBBBBBBB@ 1 x11 ... ... xp1 . . . . . . 1 x1n ... ... xpn 0  0 ... 0 0 0  0 . . . . . . . . . . . . 0 0 ... 0  1 CCCCCCCCCCA = 0 B@ x ⇤1 . . . x ⇤n+p 1 CA 
	with the LAD-LASSO problem formulated as the LAD regression prob-lem in linear programming form as 
	min e T n r+ +e T n r s.t. X⇤ + r+ r =y ⇤  free, r+  0, r  0. 
	(6) 
	The fact that the LAD-LASSO problem can be formulated as a linear program solving an LAD regression problem with an augmented design matrix and augmented response vector is important for two reasons. First, as we demonstrate in the next section, the computational meth-ods of the breakdown value of LAD regression are heavily based upon the LAD regression problem being a linear program. Hence, the LAD-LASSO breakdown value can be computed in a similar manner to that of computing the breakdown value of LAD reg
	ˆLAD = X⇤1 B y ⇤ B, 
	where X⇤ B is some nonsingular (p+ 1) ⇥ (p+ 1) submatrix of X⇤ and y⇤ B the associated rows of the response vector. In the event that the rows in X⇤ B are only among the first nrows, then ˆLAD will have p+1 nonzero values. On the other hand, any row of X⇤ B that comes from the last prows of X⇤ will have associated ˆLAD values set to 0. 
	0.3 Determining the breakdown value of LAD-LASSO 
	Consider the LAD estimated regression parameters ˆLAD based on data (X,y). If we contaminate m(1  m<n) values of the response vector y in a way so that row iis replaced by (xi ,y˜i), we obtain some new data (X,y˜). The LAD estimated regression parameters applied to (X,y˜) are di↵erent from the original ones. We can use any norm k · k on Rp to measure the distance kˆLAD(X,y˜)ˆLADk of the respective estimates. If we vary over all possible choices, then this distance remains either bounded or not bounded.
	b(m,y|X)=sup ˜y kˆLAD(X,˜y)  ˆLAD(X,y)k 
	be the maximum bias that results when we replace at most m of the original values of the dependent variable yi with arbitrary new data. The conditional breakdown value of LAD regression is 
	a(y|X)= min 1m<n ⇢ m: b(m,y|X)is infinite  ; 
	i.e., it is the minimum number of values of y that, if replaced with arbitrary new data, make the LAD regression technique break down. [8] show that the conditional breakdown value of LAD regression can be computed by solving the following mixed-integer program when the design matrix X is in general position: 
	min nX i=1 ui + li = a(y|X) 
	(7a) 
	s.t.x⇠+ ⌘⌘+ si ti = 0 for i=1,...,n, i +     
	(7b) 
	si  Mui  0,ti  Mli  0 for i=1,...,n, 
	(7c) 
	⌘+ i+ ⌘i+ Mui + Mli  M for i=1,...,n, 
	(7d) 
	ui + li  1 for i=1,...,n, 
	(7e) 
	nX i=1 ⌘+ i + ⌘ i  si  ti  0, nX i=1 si + ti  ", 
	(7f) 
	⇠ free, ⌘+  0, ⌘  0, s  0, t  0, 
	(7g) 
	ui,li 2 {0,1} for i=1,...,n 
	(7h) 
	where we assume that M is a suitably chosen large number and " a small number so that constraints (7c) and (7d) are nonbinding for the solution that results if we set ui or li equal to 1 or ui = li = 0. [13] and [14] provide an enumerative approach to computing the conditional breakdown of LAD regression. [8] show that this approach provides the same value as the mixed-integer program (when the design matrix is in general position) and [9] describe the enumerative approach through a linear programming frame
	i max i2E |x ⇠|P i2N |xi⇠|  1 2, 
	where 
	⇠= ✓ 1 0 XB ◆1 ✓  0 ◆ , 
	 is a positive constant and the algorithm enumerates through all (p)⇥ (p+ 1) submatrices XB of X. 
	 is a positive constant and the algorithm enumerates through all (p)⇥ (p+ 1) submatrices XB of X. 

	To compute the breakdown value of the LAD-LASSO regression problem described in equation (6), we use the enumerative approach described above with X substituted with X⇤ and y substituted with y⇤ . The reason for this is the mixed-integer programming approach is based upon a design matrix that is in general position and the design matrix X⇤ is not necessarily in general position, resulting in incorrect breakdown values. In the next section, we describe the numerical experiments that we conducted in order to 
	y 0 = 0 BBBBBBBBBBBB@ y1 . . . yn 0 0 . . . 0 1 CCCCCCCCCCCCA , X 0 = 0 BBBBBBBBBB@ x11 ... ... xp1 . . . . . . x1n ... ... xpn  0 ... 0 0  0 . . . . . . . . . . . . 0 ... 0  1 CCCCCCCCCCA = 0 B@ x 0 1 . . . x 0 n+p 1 CA. (8) 
	We note that the conditional breakdown value of the formulation of the LAD-LASSO regression problem is a lower bound on the LAD-LASSO method. This is because the algorithm used to compute the breakdown value permits potential contamination in the response vec-tor described in equation (5) and equation (8). In other words, the breakdown calculation assumes that contamination can take place in the entire response vector, including the 0 values corresponding to the LASSO constraints, where in reality such cont
	We note that the conditional breakdown value of the formulation of the LAD-LASSO regression problem is a lower bound on the LAD-LASSO method. This is because the algorithm used to compute the breakdown value permits potential contamination in the response vec-tor described in equation (5) and equation (8). In other words, the breakdown calculation assumes that contamination can take place in the entire response vector, including the 0 values corresponding to the LASSO constraints, where in reality such cont
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	0.5 Examples of breakdown values of LAD-LASSO-based methods 
	In this section we illustrate the calculation and interpretation of break-down values for various data sets that have appeared in the robust-ness literature. The data sets used are the aircraft data, coleman data, Hawkins-Bradu-Kass (HBK) data, salinity data, and the modified wood gravity data. Each of these data sets can be found and is discussed in [16]. 
	For each data set, we produce a three-panel figure of breakdown val-ues (Figures 1 – 5). The top panel plots breakdown values versus the number of active (nonzero slope) predictors over a range of  values, for the direct LAD-LASSO (L-L), the relaxed LAD-LASSO (RL-L), the versions obtained by estimating the intercept indirectly based on centering variables with sample means (L-L (mean) and RL-L (mean), respectively), and the versions obtained by estimating the intercept indirectly based on centering variabl
	Figure
	Figure 1: Breakdown values for aircraft data. 
	Figure
	Figure 2: Breakdown values for coleman data. 
	Figure
	Figure 3: Breakdown values for wood data. 
	Figure
	Figure 4: Breakdown values for HBK data. 
	don’t improve on the breakdown from their original L-L method. Fur-ther, indirectly estimating the intercept by centering using the mean results in far higher breakdown values for L-L than any other method. We speculate that this could be because fourteen observations in the data set were artificially created to be leverage points that mask each other, with very unusual predictor values relative to the others. When centering using the median, these points are still recognized as unusual, and LAD is a↵ected 
	0.6 Conclusion and future work 
	In this chapter we have illustrated how the worst-case robustness of the LAD-LASSO method can be examined through determination of the breakdown value for a given data set and specified choice of the regu-larization parameter , and how using a version of the relaxed LAD-LASSO can sometimes improve the breakdown considerably. A natural next question is to wonder if the (relaxed) LAD-LASSO method can be modified to improve the breakdown further. [9] and [10] showed how weights can be chosen to produce a weig
	Figure
	Figure 5: Breakdown values for salinity data. 
	tor that can increase the breakdown of LAD regression; it would be interesting to see if a similar improvement can be made in construct-ing WLAD-LASSO methods. Several authors have proposed versions of WLAD-LASSO (for example, [2], [5], and [11]), and it would be in-teresting to explore the breakdown properties of those methods as well. 
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