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Preface 

In the rapidly evolving world of finance, the ability to mitigate risks 
effectively is more crucial than ever. My journey of double majoring in 
Data Science and Business&Finance has been driven by a fascination 
with the intersection of finance and technology. With a strong academic 
background in both disciplines, I embarked on a project to explore how 
cutting-edge machine learning techniques can revolutionize financial 
hedging strategies. 

This thesis, "Optimal Hedging via Deep Reinforcement Learning with 
Soft Actor-Critic," is inspired by the potential of deep reinforcement 
learning (DRL) to provide dynamic and efficient solutions to complex 
financial problems. My curiosity was piqued by the Soft Actor-Critic 
(SAC) algorithm’s success in various complex tasks, which led me to 
investigate its application in financial hedging. 

The target audience for this work includes academics in finance and ma-
chine learning, financial practitioners looking for innovative risk manage-
ment strategies, and anyone interested in the practical applications of 
artificial intelligence in the financial industry. This thesis demonstrates 
the potential of DRL in optimizing hedging strategies, which is vital for 
managing financial risks and making informed investment decisions. 
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Abstract 

The thesis addresses the problem of optimal hedging in financial markets 
using deep reinforcement learning, specifically through the Soft Actor-
Critic (SAC) algorithm. It explores the interesting challenge of applying 
sophisticated machine learning techniques to automate and potentially 
optimize hedging strategies in the volatile financial trading landscape. 
The approach involves leveraging the SAC algorithm’s stability and effi-
ciency in learning policies within a highly uncertain environment. The 
paper provides evidence of the efficacy of reinforcement learning in man-
aging complex financial objectives and offers a comparative analysis be-
tween SAC-based hedging strategies and other existing methods. It aims 
to bridge the gap between advanced machine learning techniques and 
practical financial applications, contributing to both academic discourse 
and practical financial risk management. 

Keywords 

Optimal Hedging; Deep Reinforcement Learning; Soft 
Actor-Critic; Financial Markets; Derivatives; Risk 

Management; 
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1 Introduction 

In the realm of financial markets, the concept of hedging is pivotal to managing risk and 

ensuring portfolio stability. It refers to the practice of strategically opening positions to 

offset potential losses in investments, which is a fundamental aspect of modern financial 

theory and practice. Traditionally, to hedge against the inherent risks in derivatives trad-

ing, traders keep a close watch on certain metrics known as “Greek letters.” Among Greek 

Letters, Delta holds significant importance, representing the sensitivity of a derivative’s 

price to changes in the underlying asset’s value. Traders often aim to achieve positions 

that are delta-neutral or nearly so. 

The dynamic nature of an option’s delta throughout its duration necessitates regular 

adjustments to the trader’s stance. In an ideal scenario without transaction costs or other 

hurdles, the most effective strategy would involve continuous rebalancing. Adhering to the 

hypothesized asset price model, such continuous adjustments ensure the expected hedging 

expenses equaling the option’s theoretical valuation [3]. However, real-world factors like 

transaction expenses and various trading slippage (collectively termed “trading costs”) ne-

cessitate a deviation from this ideal strategy. Additionally, adjustments to the underlying 

asset’s position are made at intervals, rather than in a continuous fashion. 

Machine learning, particularly reinforcement learning (RL), stands at the forefront of 

this revolution, offering dynamic and adaptive approaches to investment strategies that 

traditional statistical models struggle to match. RL aims to learn optimal actions through 

interaction with an environment to maximize some notion of cumulative reward. Among 

RL algorithms, the Soft Actor-Critic (SAC) algorithm has garnered significant attention 

due to its stability and efficiency in learning policies. The SAC, an off-policy algorithm that 

optimizes a stochastic policy in an entropy-augmented reinforcement learning framework, 

has demonstrated state-of-the-art performance in continuous action spaces, making it an 

attractive choice for financial applications where decision spaces are often complex and 

multi-dimensional. 

This paper explores the application of the SAC algorithm to hedging strategies within 

the context of hedging a call option. By leveraging the robustness of SAC, the research 

5 



aims to unearth insights into the viability of reinforcement learning as a means to automate 

and potentially optimize hedging. The investigation is grounded in the hypothesis that 

SAC can outperform traditional hedging techniques and other RL algorithms like Deep 

Deterministic Policy Gradient, providing a more reactive and informed approach to risk 

mitigation in the volatile landscape of financial trading. 

The contribution of this paper is threefold. First, it demonstrates the implementation 

of SAC in a financial hedging scenario, which, to the best of my knowledge, has not been 

explored extensively. Second, it provides evidence of the efficacy of reinforcement learning 

in managing complex financial objectives without passing the required knowledge to the 

RL agent. Third, it offers a comparative analysis between SAC-based hedging strategies 

and other existing methods, thus underscoring the advantages and potential limitations of 

the proposed approach. 

As such, this paper aims to bridge the gap between sophisticated machine learning 

techniques and practical financial applications. It seeks to not only contribute to academic 

discourse but also provide a blueprint for financial practitioners considering the integration 

of advanced AI methodologies into their risk management arsenals. In doing so, it paves 

the way for further innovations in the intersection of machine learning and finance. 

2 Related Work 

2.1 Traditional Hedging Under Transaction costs 

The exploration of hedging strategies in the presence of transaction costs has been a critical 

area of research in quantitative finance. Leland (1985) pioneered this field by developing 

an option hedging strategy with the presence of transaction costs, emphasizing the need 

for adjusted hedging intervals, despite that the method performs poorly when the option 

is at the money and close to expiration (which causes a high gamma) [14]. Boyle and 

Vorst (1992) furthered this work by searching into option pricing under transaction costs 

[4]. 

Grannan and Swindle (1996) developed strategies to minimize transaction costs in hedg-
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ing, using the Mean-Variance Criterion and evaluated the strategies using simulations, 

focusing more on the computational perspective[9]. Toft (1996) also explored the mean-

variance trade-off in hedging with transaction costs, highlighting the balance between risk 

and cost [21]. Whalley and Wilmott (1997) conducted an asymptotic analysis of optimal 

hedging models, offering insights into the long-term impacts of transaction costs on hedg-

ing strategies [22]. Lastly, Martellini (2000) proved the efficiency of his option hedging 

strategy by both a better hedge with the same transaction cost and a lower transaction 

cost with the same hedge. [16]. 

A common feature that these papers share is that they all considered proportional 

trading costs. Nevertheless, trading cost increases faster than linearly with respect to 

the size of the trade. Several works have been conducted to manage this non-linearity. 

Rogers and Singh (2010) were the first to consider option hedging under illiquidity and 

formed it into an optimal control problem [19]. Almgren and Li (2016) pioneered option 

hedging under non-linear transaction costs caused by both temporary and permanent 

market impact [1]. Bank, Soner, and Voß (2017) assumed quadratic trading costs caused 

by the market impact of larger orders and also used optimal control to solve the problem 

[2]. All these works are based on traditional mathematical approaches such as optimal 

control. Note that these approaches heavily rely on market assumptions such as modeling 

stock price as Geometric Brownian Motion and there are no easy ways to improve given 

real market data. Nevertheless, option hedging can be treated as serial decision-making, 

which can be addressed by state-of-the-art deep reinforcement learning algorithms. 

2.2 Reinforcement Learning and Deep Reinforcement Learning 

Reinforcement learning (RL) has emerged as a powerful methodology in the realm of 

machine learning, enabling agents to make serial decisions and learn optimal policies based 

on environmental feedback. Markov Decision Processes (MDPs) provide a mathematical 

framework for modeling decision-making in such situations. MDPs are characterized by a 

set of states S, a set of actions A, a transition function P (s ′ |s, a) defining the probability 

of transitioning to state s ′ from state s after taking action a, and a reward function 

7 



R(s, a, s ′ ) that assigns a reward for each transition [20]. There are multiple algorithms 

and they all seek to learn a policy that maximizes the total reward over all successive 

steps. Such algorithms typically use a function Q(s, a) to map current state s and action 

taken a to the expected sum of future rewards. However, when state space and action 

space become larger or continuous, it is no longer feasible. Neural networks are then used 

to approximate the Q-function and other functions needed in training to form a family of 

Deep Reinforcement Learning (DRL) algorithms. 

Actor-critic methods are a cornerstone of DRL, balancing the strengths of value-based 

and policy-based approaches. In this framework, the "actor" proposes actions based on 

the current policy, while the "critic" assesses these actions using a value function, guiding 

the actor towards better decision-making. One of the key advancements in this area is the 

Deep Deterministic Policy Gradient (DDPG) algorithm, which combines the strengths of 

policy gradient methods with the stability of Q-learning, suitable for continuous action 

spaces [15]. 

Soft Actor-Critic (SAC) is another significant development in actor-critic methods, em-

phasizing maximum entropy RL. This approach encourages exploration by not just aiming 

to maximize the expected return but also rewards the entropy of the policy. This leads 

to more robust and sample-efficient learning, especially in environments with complex 

and high-dimensional action spaces [10]. Both algorithms proved to handle sophisticated 

problems such as robotics and gaming. 

2.3 Hedging with Deep Reinforcement Learning 

As mentioned in former sections, option hedging can be treated as serial decision-making. 

Various research has been done at the intersection of reinforcement learning and financial 

hedging strategies. Halperin (2017) first introduces the Q-Learning in the Black-Scholes(-

Merton) Worlds (QLBS), which utilizes Q-Learning, a reinforcement learning technique, 

to price options through portfolio replication in an environment without transaction costs 

[12]. Buehler et al. (2018) proposed "Deep Hedging," a method that employs deep rein-

forcement learning to hedge a call option with transaction costs. Buehler used hedging 
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error and CVaR to evaluate his policies on the Black-Scholes Model, Heston Model and 

S&P 500 index [5]. 

Kolm and Ritter (2019) further expanded the application of reinforcement learning in 

hedging through a practical lens. Their work aims to maximize the utility of the investor 

using DQN algorithm because market actors are often risk-averse rather than risk-neutral 

[13]. Du et al. (2020) developed their work to employ PPO algorithm on the task, which 

proved to be more sample efficient when training [8]. Cao et al. (2020) delve into DDPG 

algorithm for hedging, highlighting their adaptability to different asset-price processes 

and conditions, including changing volatility. This research emphasizes the computational 

advantages and flexibility of deep learning in adapting to complex market dynamics [7]. 

Canelli et al. (2023) approached hedging through a different type of reinforcement 

learning technique-contextual k-armed bandit problem. Their research contrasts with 

traditional Q-learning by focusing on reducing hedging errors and improving efficiency, 

offering a nuanced view of how RL hedging policies can be improved during the process 

of hedging [6]. 

Halperin, Kolm, Du and Canelli’s works were all based on assumptions about price and 

volatility processes such as Brownian Motion. Mikkilä and Kanniainen (2021) provide a 

real-world perspective by applying deep reinforcement learning to hedge S&P500 index 

options using real intra-day data. Their results showcase the practical effectiveness of 

deep reinforcement learning in managing real-world options, highlighting its potential for 

real-time, data-driven decision-making in financial hedging [17]. Lastly, all the above 

works were about delta hedging and all used delta hedging as a benchmark, while Cao 

et al. (2023) introduced deep distributional reinforcement learning for gamma and vega 

hedging, considering the effects of evolving volatility[6]. 

Du et al. (2020) found that when the entropy of the policy of PPO was rewarded large 

enough, the resulting policy was more likely to be more financially intuitive and stable than 

when it is not [8]. Nevertheless, PPO, as an on-policy algorithm, has its disadvantages. 

Off-policy algorithms are prized for their flexibility, allowing them to learn from various 

sources and separate exploration from policy optimization. Furthermore, their stability, 
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aided by replay buffers, ensures robust learning in noisy environments like finance. Addi-

tionally, these algorithms efficiently use computational resources, facilitating rapid model 

development through parallelized training. Particularly in fields like finance, where data is 

precious, off-policy methods excel by maximizing learning from limited interactions, mak-

ing them highly suitable for real-world applications. SAC is a state-of-the-art off-policy 

DRL algorithm that integrates policy entropy maximization into its objective function. 

The entropy bonus in SAC is not just an add-on for encouraging exploration but also 

directly influences the policy improvement step. These policies encourage exploration and 

prevent premature convergence to sub-optimal policies, a trait particularly advantageous 

in the stochastic and unpredictable financial market. With a policy of larger entropy, the 

agent is expected to behave well in scenarios that are less similar to training data, ensuring 

the stability of the resulting policy. 

3 Methodology 

3.1 Problem Setting 

State Space 

The state must encapsulate the information pertinent to arriving at the best possible 

decision. Details irrelevant to the task, or those inferable from existing state variables, are 

extraneous and thus omitted. When considering the replication of European options with 

various exercise prices, the appropriate state space is formulated as follows: 

S := N × R3 
+ = {(n, S, τ, C) | n ∈ N, S ∈ R+ , τ ∈ R+ , C ∈ R+} 

Herein, at any given moment t, the observer is presented with a four-dimensional state 

vector st = (St, τ, nt, C), where St represents the stock’s price at the instance t; τ := 

T − t > 0 denotes the option’s time to maturity; nt represents the current number of 

shares possessed; C denotes the price of the call option (for one share of the underlying). 

It is crucial to note that the state need not comprise the ’Greeks’ of the option, for these 

are derivative functions of the variables already within the agent’s reach through the state. 
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With a robust dataset for training, it is anticipated that the agent will autonomously learn 

such complex functions as required. 

Action Space 

After observing the state, the agent takes an action at by choosing the position of the 

underlying asset to hold after trading from the action space: 

A := {(H)| − 1 ≤ H ≤ 1} 

The action is then scaled according to L which represents the number of shares of the 

underlying asset that one option contract corresponds to. It is designed to be between -1 

and 1 for easier training of the DRL agent. 

Transition Function 

With the input state and action of the former step, the environment will pass out a 

new state according to certain probability distributions. The transition of the stock price 

is first set to be a Geometric Brownian Motion. The price of the call option is computed 

using the BSM formula [3]. Below is the transition function for each component of the 

state. 

nt+1 = At ∗ L 

St+1 = St exp 

 

µ− 
σ2 
t 

2 

 

+ σ 
√ 
∆tZt 

 

τt+1 = τt − ∆t 

Ct+1 = St+1Φ(d ′ 1) − S0e
−rτt+1 Φ(d ′ 2) 

where 

d ′ 1 = 
log 
 

St+1 

S0 

 
+ 
 
r + σ

2 

2 

 
τt+1 

σ 
√ 
τt+1 

, d ′ 2 = d ′ 1 − σ 
√ 
τt+1 
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Following the practice of Cao et al. (2023), the volatility of a stock is modeled to be 

another geometric Brownian motion as they experimented with vega hedging, which would 

not be necessary with fixed volatility. The transition function for n and τ would be the 

same as before while the transition of stock price and option price is as follows: 

St+1 = St exp 

 

µ− 
σ2 
t 

2 

 

+ σt 

√ 
∆tZ1 

 

where 

σt+1 = σt exp 

 

− 
v 2 

2 
∆t + v 

√ 
∆tZ2 

 

and 

Z2 = ρZ1 + 
 
1 − ρ2Z ′ 2 

Z1 and Z ′ 
2 are independent standard normal distributions, ρ is the correlation coefficient 

between Z1 and Z2, and v is the volatility of volatility. 

The price of the call option is the same but uses the implied volatility σimp to replace the 

constant volatility in the last setting. The implied volatility is calculated using a special 

case of the SABR model developed by Hagan et al. (2002) [11]. Given the inputs S (spot 

price), τ (time to maturity), σ (volatility), K (strike price), r (risk-free rate), v (volatility 

of volatility), ρ (correlation), and β (default value of 1), the SABR volatility model can 
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be expressed as follows: 

F = S · e rτ 

x = (F · K) 
1−β 
2 = 1 

y = (1 − β) · log 

 
F 
K 

 

= 0 

A = 
σ 

x · 
 
1 + y

2 

24 + y4 

1920 

 = σ 

B = 1 + τ 

 
(1 − β)2 · σ2 

24 · x2 
+ 

ρβvσ 
4x 

+ 
v 2(2 − 3ρ2) 

24 

 

Φ = 
v · x 
σ 
· log 

 
F 
K 

 

χ = log 

 
1 − 2ρΦ + Φ2 + Φ − ρ 

1− ρ 

 

σ imp = 

   

σ·B 
F 1−β = σ·B 

F if F = K, 

A·B·Φ 
χ = σ·B·Φ 

χ otherwise. 

Reward Function 

Automatic hedging is described as utilizing trained reinforcement learning (RL) agents 

to manage the hedging activities for specific derivative positions. The agents maintain a 

non-tradable short option position, but they are permitted to engage in trading other non-

option assets for replication purposes. In an ideal scenario without trading frictions and 

with the ability for continuous trading, a perfect hedging dynamic portfolio could exist, 

rendering the net portfolio variance null. However, this paper considers the practical 

scenario of trading frictions and discrete trading, aiming to minimize both variance and 

costs. 

The article aims to formulate the reward function for the RL agent, assuming it operates 

under a quadratic utility framework. The optimal portfolio for the agent aligns with a 

mean-variance optimization model, encapsulated by risk aversion factor κ, as follows: 

max 
 
E[wT ] − 

κ 
2 
V [wT ] 
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In this model, wT represents the aggregate of wealth increments δwt, 

wT = w0 + 
T 

t=1 

δwt 

where E[wT ] equals w0 plus the sum of expected increments E[δwt]. Assuming the incre-

ments of wealth are independent over time, meaning cov(δwt, δws) = 0 for s ̸= t, 

V [wT ] = 
 

t 

V [δwt]. 

Options in a complete market scenario are redundant as they can be precisely replicated 

by a continuous trading strategy. Nevertheless, in the practical world, the variance of the 

difference between an option and its replicating portfolio is non-zero. Our agent seeks to 

balance between cost and variance by optimizing the objective: 

min 
T
t=0 

 
E[−δwt] + 

κ 
2 
V [δwt] 

 

Assuming a random walk for the log price process, wealth increments can be broken down 

into qt − ct, where qt is the random walk component, and ct represents the total trading 

costs. Thus, the expected increment in wealth is simply the negation of the expected cost 

E[−δwt] = E[ct], leading to a balancing act between cost and variance. More frequent 

hedging can reduce variance but at the cost of increased trading expenses. 

Ritter (2017) demonstrated that by selecting an appropriate reward function, maxi-

mizing E[u(wT )] could be transformed into an RL problem [18]. The periodical reward, 

approximated by the equation below, facilitates a mean-variance optimization through RL 

training: 

Rt := δwt − 
κ 
2 
(δwt)

2 

Furthermore, trading cost is defined by a quadratic function with respect to trading 

volume to capture the increasing market impact of larger orders: 

14 



trading costt = trading cost parameter · St · (|∆nt+1| + 0.01 · ∆nt+1 
2) 

where at time t: 

wt = −L ∗ (Ct+1 − Ct) + nt+1 ∗ (St+1 − St) − trading cost t 

Implementing this reward mechanism effectively trains the agents to maximize expected 

utility, translating into automatic hedgers proficient in managing the balance between 

hedging costs and variance. 

Benchmark Performance 

The performance of the trained SAC agent is compared to the Delta hedging policy and 

trained DDPG agent, which has been proved to perform well in Cao et al. (2020). With 

the current state denoted by St, delta hedging policy is defined by: 

πDH(St) = −∆(St) 

where ∆(St) is the Black-Scholes-Merton delta of the current option position. In our 

setting, we are always at a constant short position of the call option, so the delta would 

be the opposite number of the delta of the call option, which is bounded between 0 and 

1. Note that the action will be scaled automatically in the environment. 

3.2 Solution 

Environment 

The environment described in the Problem Setting section is implemented in Gymna-

sium using Python (see https://gymnasium.farama.org). In training and simulations, the 

environment is set with the following parameters: risk-free rate r = 0, drift term of stock 

price µ = 0, volatility σ = 0.15 (annual), time to maturity T = 10 and 30 (days), trading 

frequency D = 5 (times per day), trading cost parameter = 0.003, shares of underlying 

corresponding to the call option L = 100, risk-averse level κ = 0.1. When the stock price 

is set to have stochastic volatility, volatility of volatility v = 0 and v = 0.5 (annual), and 
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correlation between Z1t and Z2t, ρ = −0.4, which captures the leverage effect. In each 

simulation period, there are T × D timesteps. At each timestep, the agent will observe 

the current state and pass the resulting action to the environment, before which the en-

vironment returns the next state and the reward of the current step until the final step 

is reached. Note that the drift term of stock price µ is intentionally set to zero because 

when trained with large samples, the agent might learn that the stock price is expected 

to increase and simply takes the maximum long position of the stock as if it is an arbi-

trage opportunity. When training the agent with real-world data, stock returns should be 

residuals whose mean is zero to avoid this issue. Note that since the risk-free rate is set 

to be zero, the price of the call option is lower than in real-world cases. 

Algorithms 

The DRL algorithm employed in the research is Soft Actor-Critic, which belongs to the 

Actor-Critic methods. Actor-Critic methods blend the characteristics of value-based and 

policy-based strategies. These methods employ two components: an actor, which dictates 

the policy of actions, and a critic, which evaluates these actions. The actor, represented by 

the policy function π(a|s, θ), maps the current state to action, with θ being the parameters 

that define this policy. The actor’s objective is to optimize this policy to maximize the 

sum of future rewards. 

The critic, on the other hand, assesses the actions taken by the actor using the value 

function V (s, w), where w are the parameters of the value function. This function estimates 

the expected return from a given state, providing feedback on the quality of the actions 

chosen by the actor. The interaction between actor and critic is mediated through the 

Temporal Difference (TD) error, δ = r+γV (s ′ , w)−V (s, w), which quantifies the difference 

between the estimated returns and the actual returns, where r is the immediate reward, 

s ′ is the subsequent state, and γ is the discount factor that balances the importance of 

immediate and future rewards. 

During the learning process, the actor updates its policy to favor actions that lead to 

higher rewards, based on the guidance from the critic. This is achieved by adjusting 

the policy parameters θ in the direction that maximizes the expected return, utilizing 
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the gradient ascent method. The update rule for the actor’s parameters is driven by the 

gradient of the policy’s performance, expressed as ∇θJ(θ) = Eπ[∇θ log π(a|s, θ) · δ]. 

Simultaneously, the critic updates its value function parameters w to better estimate 

the true returns, minimizing the squared TD error. This is typically done using gradient 

descent, with the update rule ∇wL(w) = −E[δ∇wV (s, w)]. Through this continuous 

feedback loop, the critic helps to refine the actor’s policy decisions, leading to a more 

effective learning process in DRL environments. The symbiotic relationship between the 

actor and the critic facilitates a more stable and efficient approach to learning optimal 

policies in complex environments. 

Building on the foundation of Actor-Critic methods, Soft Actor-Critic (SAC) emerges 

as a more advanced approach that incorporates the principles of entropy maximization to 

achieve more robust and efficient learning [10]. 

In SAC, the policy is trained to maximize not only the expected sum of future rewards 

but also the entropy of the policy itself. This entropy term, which measures the randomness 

of the policy, encourages the actor to explore a wider range of actions, thus preventing 

premature convergence to suboptimal policies. The objective function in SAC includes an 

entropy term, H, and is given by: 

J(θ) = Est∼D,at∼πθ 

 
∞ 

t=0 

γt (r(st, at) + αH(π(·|st))) 

 

Here, α is a temperature parameter that controls the relative importance of the entropy 

term against the reward, allowing a balance between exploration (entropy maximization) 

and exploitation (reward maximization). 

SAC uses two Q-functions, or critics, to reduce the overestimation bias common in Q-

learning methods. These Q-functions are updated using the Bellman equation, and the 

policy is updated by minimizing the expected KL-divergence, leading to a policy that is 

more stable and less prone to local optima. The Python package "stable-baseline3" (see 

https://stable-baselines3.readthedocs.io) is used to implement the SAC algorithm in our 

environment. The pseudo-code of the SAC algorithm is shown in Algorithm 1. 

Model Architecture and hyperparameters 
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Algorithm 1 Soft Actor-Critic [10] 
1: Input: initial policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay buffer 
D 

2: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2 

3: repeat 
4: Observe state s and select action a ∼ πθ(·|s) 
5: Execute a in the environment 
6: Observe next state s ′ , reward r, and done signal d to indicate whether s ′ is terminal 
7: Store (s, a, r, s ′ , d) in replay buffer D 
8: If s ′ is terminal, reset environment state. 
9: if it’s time to update then 

10: for j in range(however many updates) do 
11: Randomly sample a batch of transitions, B = {(s, a, r, s ′ , d)} from D 
12: Compute targets for the Q functions: 

y(r, s ′ , d) = r + γ(1 − d) 

 

min 
i=1,2 

Qϕtarg,i (s ′ , ̃a ′ ) − α log πθ(ã ′ |s ′ ) 

 

, ̃  a ′ ∼ πθ(·|s ′ ) 

13: Update Q-functions by one step of gradient descent using 

∇ϕi 

1 
|B| 

 

(s,a,r,s ′ ,d)∈B 

(Qϕi (s, a) − y(r, s ′ , d)) 2 for i = 1, 2 

14: Update policy by one step of gradient ascent using 

∇θ 
1 
|B| 

 

s∈B 

 

min 
i=1,2 

Qϕi (s, ̃a(s)) − α log πθ(ã(s)|s) 
 

, 

15: Update target networks with 

ϕtarg,i ← ρϕtarg,i + (1 − ρ)ϕi for i = 1, 2 

16: end for 
17: end if 
18: until convergence 
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Figure 1: Average Reward versus Training Time for SAC and DDPG 

There are five neural networks involved in the SAC algorithm, one for policy network, 

two for target Q-networks, and two for local Q-networks. All five neural networks are set 

to be a standard Multi-Layer Perceptron which has 3 hidden layers with 64 neurons on 

each layer and uses ReLU as an activation function. Such model architectures proved to 

balance training time and performance well in my tuning. The input size of the policy 

network is the dimension of state space which is 4 and the output size is 2, for the mean and 

the standard deviation of the action distribution. The resulting action would be sampled 

from this distribution. The input size of the Q-networks is 5, 4 for state space and 1 for 

action space, and the output size is 1. The optimizer to update the network parameters 

is Adam with the learning rate = 0.0001. 

For the SAC algorithm itself, hyperparameters are tuned to the following: learning 

starts from 5000 timesteps, replay buffer size is 16384, batch size is 1024, discount rate 

γ = 1. All the other hyperparameters are the default values from the stable-baseline3 

implementation. The training lasts for 106 timesteps whereas the policy is evaluated using 

100 simulations every 1000 timesteps of training. DDPG algorithm is also employed to 

train an agent as another benchmark performance to assess the efficacy of the SAC agent. 
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4 Main Results 

Both baseline and DRL (SAC and DDPG) policies are evaluated by running 10,000 sim-

ulations in the hedging environment. Their total rewards, total PnL, and total trading 

costs are stored for each simulation. Training and evaluation are done for both Geometric 

Brownian Motion stock price and Stochastic Volatility stock price. 

4.1 GBM Stock Price Scenario 

Figures 2 and 3 demonstrate the performance of different hedging strategies in 10,000 out-

of-sample simulations. Rewards are the sum of rewards at each timestep in one episode 

which lasts for 10 trading days. P&L is the sum of wt in one episode and costs are the 

sum of trading costs in one episode. From the KDE of rewards, SAC performs better than 

DDPG and Delta Hedging, which proves that the SAC agent is capable of learning better 

and more robust policy through its policy entropy maximization feature. Looking into 

details in its hedging behavior, the total P&L is less skewed compared with DDPG and 

far closer to zero than Delta Hedging. The DDPG agent hedges the least while the Delta 

Hedging agent hedges the most. From Table 1, it is shown that the SAC agent can achieve 

only 4% more std of PnL of Delta Hedging using only approximately half of the costs. 

While the DDPG agent generates even less trading costs, the std of PnL is far higher, 

proving that the SAC agent manages to achieve a better balance of cost and risk. 

4.2 Stochastic Volatility Stock Price Scenario 

Figures 4 and 5 demonstrate the performance of different hedging strategies in 10,000 out-

of-sample simulations under stock price stochastic volatility. From the KDE of rewards, 

SAC still performs better than DDPG and Delta Hedging, which proves the robustness of 

our findings in an even more volatile scenario. Yet, the performance edge of the SAC agent 

is not as large as it was in the GBM case. Looking into details in its hedging behavior, the 

DDPG agent hedges roughly as much as the SAC agent proved by similar trading costs. 

Intuitively, investors should hedge less when volatility is stochastic since the benefits from 

20 



Figure 2: Kernel Density Estimate of Simulation Rewards (GBM stock price) 

Figure 3: Kernel Density Estimate of Simulation P&L and Trading Cost (GBM stock 
price) 
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Figure 4: Kernel Density Estimate of Simulation Rewards (Stochastic Volatility stock 
price) 

hedging have more uncertainties compared to the constant volatility case. The SAC agent 

manages to learn a policy that hedges less than the GBM case. 

5 Discussion 

Though the SAC agent appears to perform well in our stock price and option pricing 

models, it is not guaranteed to perform well or beat baseline strategies in real-world 

applications. There are a few techniques to integrate with the SAC algorithm that could 

potentially improve the transferability of DRL policies. 

First, Bayesian methods could also be integrated into the SAC algorithm to handle un-

certainty more effectively and prevent overfitting on training data, thus benefiting perfor-

mance in real-world settings. By treating the parameters of the SAC model as probability 

distributions rather than fixed values, Bayesian SAC introduces a natural measure of un-

certainty into the decision-making process. This approach is not only crucial for managing 
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Figure 5: Kernel Density Estimate of Simulation P&L and Trading Cost (Stochastic 
Volatility stock price) 

the inherent unpredictability in financial markets but also provides a regularization effect 

that prevents the model from fitting too closely to the training data. The probabilistic 

nature of Bayesian methods encourages exploration by adding an extra layer of stochas-

ticity to the policy’s actions, thus potentially discovering more robust hedging strategies. 

Additionally, Bayesian SAC can continuously update its belief about model parameters 

as more data becomes available, which is ideal for adapting to evolving market conditions 

and for achieving a balance between exploration and exploitation in policy development. 

Second, Curriculum learning also offers a structured approach to progressively enhance 

the training of the SAC algorithm, making it well-suited for complex hedging tasks. 

By starting with simpler market scenarios and gradually introducing more complex and 

volatile conditions, curriculum learning mimics the human learning process, where founda-

tional knowledge is built first before advancing to more challenging tasks. This approach 

can improve the SAC model’s generalization capabilities and prevent it from getting stuck 

in suboptimal solutions early in the training process. For financial hedging, curriculum 

learning can help the model develop a robust understanding of basic hedging dynamics be-

fore tackling high-risk financial instruments or erratic market behaviors. Such a structured 

learning progression ensures that the SAC algorithm optimizes its policy across a contin-

uum of increasingly challenging environments, enhancing its effectiveness and reliability 

in practical financial applications. 
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GBM Stock Price SABR Stock Price 

Method Mean Std Mean Std 

SAC 
PnL -48.61 34.88 -46.11 38.39 
Cost 48.23 12.63 46.13 11.52 

Rewards -98.94 65.25 -109.98 77.52 

DDPG 
PnL -43.70 40.90 -51.43 35.43 
Cost 42.97 8.59 51.32 12.30 

Rewards -119.16 67.13 -114.97 64.07 

Delta Hedging 
PnL -96.29 33.55 -96.19 34.64 
Cost 96.44 28.21 96.39 28.09 

Rewards -146.30 55.43 -149.17 57.09 

Table 1: Performance comparison for SAC, DDPG, and Delta Hedging methods 

Furthermore, it would be preferred to train the model with real-world data when apply-

ing the model in real markets. However, the training in this study requires large amounts 

of data (106 timesteps which is 20,000 trading days. This amount of data is typically not 

available for options on a single underlying asset. Mikkilä and Kanniainen (2021) used 

option data from 419 different underlying assets to train their DRL agent. 

One way to modify the SAC algorithm to be more sample-efficient is multi-step learn-

ing. The SAC algorithm, which employs an off-policy, entropy-regularized, actor-critic 

approach, traditionally utilizes one-step returns for updating the critic. By extending this 

to n-step returns, one can more directly associate actions with their cumulative future 

rewards, thereby enhancing the algorithm’s ability to learn effective policies from fewer 

interactions with the environment. This modification necessitates a recalibration of the 

critic’s update mechanism to accommodate the temporal dimension introduced by n-step 

returns. Such an adjustment not only accelerates the convergence of the value function 

through the propagation of reward information but also optimizes the trade-off between 

bias and variance in the reward estimates. Effective implementation requires precise tun-

ing of the n-step horizon and the discount factor to align with specific environmental 

dynamics, ensuring that the algorithm remains robust and converges efficiently. 

If this modification still cannot train the DRL agent with real-world data available, an 
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alternative would be to pre-train the DRL agent using synthetic data and train the DRL 

agent again using real-world data. This approach benefits from the unlimited amount of 

synthetic data with less compromise on the transferability of the trained agent to real-

world scenarios. 

6 Conclusion 

In this paper, the application of the Soft Actor-Critic (SAC) algorithm in financial hedg-

ing strategies has proved to be effective in various settings. The research demonstrated 

that SAC outperforms traditional hedging methods and other reinforcement learning al-

gorithms, offering a more nuanced and robust approach to managing financial risks. The 

SAC’s ability to balance risk and transaction costs effectively underscores its potential as 

a robust tool in financial risk management. 

The implications of this study extend beyond academia, bridging the gap between so-

phisticated machine learning techniques and practical financial applications. For financial 

practitioners, the findings present a compelling case for integrating advanced AI method-

ologies into hedging strategies, potentially enhancing the efficacy and efficiency of risk 

management processes. However, while the research offers promising insights, it is not 

without limitations. The study’s reliance on specific market models and data sets may 

affect the generalizability of the findings, suggesting a need for further exploration across 

diverse market conditions and financial instruments. 

Future research could expand on the current work by testing the SAC algorithm in differ-

ent financial environments and real-world data, with varying degrees of market volatility 

and trading constraints. Such studies could further refine the algorithm’s capabilities, 

ensuring its applicability and robustness in real-world financial settings. Additionally, 

modifying the SAC algorithm such as utilizing multi-step learning, could yield even more 

transferable hedging strategies, pushing the boundaries of what is currently achievable in 

financial risk management. 

In conclusion, this thesis not only contributes valuable insights into the fields of finance 

and machine learning but also sets the stage for future innovations in financial hedging 
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strategies. The integration of deep reinforcement learning, particularly through the Soft 

Actor-Critic algorithm, offers a promising avenue for developing more dynamic and re-

sponsive hedging mechanisms to help investors better manage their risks. 
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