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ABSTRACT 

Vision–Language Pretraining (VLP) has achieved remarkable success across various downstream tasks, 

but such gains are largely driven by scaling up on training data. Yet, literature methods treat image-text 

pairs as isolated training examples; this neglects the rich relational structure naturally present in many 

domains, such as e-commerce product co-purchase graphs and social recommendation networks. In-

spired by neuroscientific evidence that human encodes knowledge as relationship cognitive maps, we 

introduce Structure-aware Language-Image Pretraining (SLIP). SLIP integrates a structural contrastive 

loss to align modalities while also modeling relationships between neighboring entities in a structured 

graph. To support this paradigm, we construct a large-scale Amazon Product Co-purchase Multi-

modal Graph Dataset, enabling structured cross-modality supervision at scale. Experiment results 

show that SLIP consistently outperforms CLIP on cross-modal retrieval and classification tasks in both 

zero-shot and few-shot settings, showing the value of relational supervision for cross-modal alignment. 

1 INTRODUCTION 

Vision-language alignment has emerged as a key challenge in multimodal representation learning, with recent pretraining 

approaches achieving remarkable success by learning from web-scale data, driving progress in multimodal tasks such 

as image-text retrieval, visual question answering (VQA), and image captioning Gan et al. (2022). Ground-breaking 

work CLIP (Radford et al., 2021) has shown that a simple contrastive objective can yield state-of-the-art representations 

when scaled to millions of noisy image-text pairs, and such large-scale training has thus become the paradigm for vision-

language foundation models. However, these web-scale corpora are notoriously noisy: captions can be generic, off-topic, 

or mismatched to the image. As a result, the performance is capped by the suboptimal source of supervision. 

Prior works addressing this challenge generally fall into two main categories: (1) exploring alternative forms of su-

pervision within the data—for example, Yao et al. (2021) introduces token-level alignment—and (2) refining existing 

supervising labels through techniques like knowledge distillation or bootstrapped relabeling, as in BLIP (Li et al., 2022). 

While these approaches enhance representation quality, they share a common limitation: they treat each image–text pair 

in isolation, overlooking the rich structural relationships among entities that are inherent in many real-world datasets. 

∗Under the guidance of Prof. Qiaoyu Tan 
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Many domains exhibit strong underlying structure. In e-commerce, products form co-purchase graphs-“customers who 

bought X also bought Y”-while in vision datasets, images are often connected via shared attributes or hierarchical se-

mantics (e.g., “lion” and “tiger” as big cats). Similarly, in knowledge bases, entities are arranged into richly annotated 

relational graphs. Yet, existing VLP models ignore these structures and instead learn from contrasting loosely related 

individual pairs, losing consistency and semantic grounding. Leveraging structured relations could help capture latent 

connections and contextualize visual and textual concepts beyond what any single caption can provide. 

This idea finds support in cognitive neuroscience. Humans do not store knowledge in isolation; rather, they organize 

it into cognitive maps-internal graph-like representations that encode relations among entities and facilitate flexible 

reasoning (Behrens et al., 2018). These maps enable us to generalize across experiences by exploiting structured 

relationships: when shown a laptop, for example, a shopper may automatically retrieve related items like a charger or 

a mouse. Representational distances in the brain are shaped not just by feature similarity but by relational proximity in 

learned conceptual spaces. Inspired by this, we posit that relational structure should likewise inform how machines align 

visual and textual modalities. 

In this paper, we introduce Structure-aware Language-Image Pretraining (SLIP), a framework that augments vision-

language contrastive learning with structural supervision. SLIP assumes that image-text pairs are nodes in a relational 

graph, where edges reflect semantic or contextual proximity-such as co-purchase, co-view, or hierarchical links. Specifi-

cally, Contextual signals are first aggregated using modality-specific Graph Attention Network (GAT) layers and then 

fused to form a unified node representation. This representation is used in a structural contrastive loss, which encourages 

embeddings of graph-neighboring nodes to be close in the space. This encourages cross-modal alignment for each pair, 

and coherent placement of related items, so that learned representations can reflect alignment and relational proximity. 

To support research in structure-aware multimodal learning, we curate and release the Multimodal Amazon Product 

Co-purchase Graph Dataset, a large-scale dataset of image-text pairs connected via real-world co-purchase edges. The 

dataset spans a wide range of product categories, with each product node annotated with both an image and a textual title 

or description. Edges represent purchase patterns mined from user behavior, offering weak but meaningful supervision. 

This dataset serves as a realistic and scalable benchmark for structured vision-language representation learning, where 

both multimodal data and relational graphs are available. 

Contributions. Our work makes the following key contributions: 

• We propose SLIP, a simple and scalable framework for incorporating structural supervision into contrastive 

vision-language pretraining. SLIP introduces a structural contrastive objective that regularizes image-text em

beddings based on instance-level graph connectivity. 

• We introduce the Amazon Product Co-purchase Multimodal Graph, a new large-scale dataset of image-text pairs 

linked by relational structure. It offers a challenging and realistic test bed for evaluation. 

• We demonstrate through extensive experiments that SLIP achieves state-of-the-art results on retrieval and 

classification tasks in few-shot settings, outperforming standard CLIP baselines and providing empirical 

evidence for the value of structural context. 

-
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2 RELATED WORK 

Vision-Language Pre-training. Vision-language pre-training learns strong generalization over various downstream 

tasks. Over the years, several model architectures have been proposed to support different types of applications. Dual-

encoder architectures, such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), encode images and texts sepa-

rately and align them in a shared embedding space using contrastive learning. Fusion-encoder models like ViLBERT (Tan 

& Bansal, 2019) and UNITER (Chen et al., 2020) instead perform deep cross-modal interactions by jointly encoding 

vision and language inputs. Encoder-decoder architectures, including VL-T5 (Cho et al., 2021), SimVLM (Wang et al., 

2021b), and BLIP (Li et al., 2022), follow a generative modeling approach that decodes text conditioned on visual features. 

More recently, unified transformer architectures such as PaLI (Chen et al., 2022) and Uni-Perceiver v2 (Wang et al., 2022) 

aim to support a wide variety of vision and vision-language tasks using a single, flexible framework. Alongside these 

architectural advances, pre-training objectives have also converged on a few key formulations: image-text contrastive 

learning (Radford et al., 2021; Yao et al., 2022; Li et al., 2022), image-text matching (Li et al., 2021; Wang et al., 2021a), 

and masked modeling objectives applied to language or vision tokens (Yu et al., 2022; Wang et al., 2022). However, these 

methods overlook the relational structure that exists among entities in many real-world domains, which SLIP explores. 

Scene-graph for object-level alignment. Early work injected intra-image structure by coupling object graphs with 

captioners or retrieval models. GCN-LSTM (Yao et al., 2018) and VSRN (Li et al., 2019) propagated object–object 

interactions to improve description and matching accuracy. Follow-ups for grounding and VQA (Yang et al., 2020; Li 

et al., 2019) showed analogous gains for referring-expression grounding by jointly scene-graphing image regions and 

linguistic phrases. More recently, ERNIE-ViL (Yu et al., 2021) and Structure-CLIP (Huang et al., 2024) pushed this idea 

to the pre-training stage, either by multi-task scene-graph prediction or by scene-graph-driven hard negatives on top of 

CLIP. These models innovate by exploiting object interactions, yet they remain constrained to individual image-caption 

pairs and require costly scene-graph annotations. Instead, SLIP operates on the instance-level graphs defined over the 

dataset (e.g., co-purchase graphs), requiring no object detection or scene parsing. This preserves scalability and remains 

complementary and composable with their scene-level techniques. 

Knowledge-graph fusion for alignment. Models such as MKVSE (Feng et al., 2023) and VQA-GNN (Wang et al., 

2023) enrich vision–language embeddings with commonsense or domain KGs, while GraphCLIP (Scaringi et al., 2025) 

applies a GNN over art-metadata graphs to align with images. These systems excel when factual or taxonomic context is 

critical, but they introduce dependency on curated KGs and often treat graphs as another modality and require separate 

modality-specific encoders. By contrast, our graph comes directly from user behavior and uses the same contrast heads 

without extra encoders, making the technique broadly deployable even where external KGs are unavailable. 

3 PRELIMINARIES 

3.1 BACKGROUND ON CLIP 

Information Noise-contrastive Estimation (InfoNCE) loss. Given a set of N image-text pairs {(vi, ti)}N 
i=1 , the CLIP 

framework encodes each image vi using an image encoder fV and each text ti using a text encoder fT , producing ℓ2 
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Figure 1: Illustration of contrastive vision-language pretraining using InfoNCE loss. An Amazon product (e.g., a laptop) 
is paired with its associated textual description to form positive image-text pairs. The model is trained to align these pairs 
while pushing apart negative pairs sampled from the batch. The image and text are independently encoded via modality-
specific encoders before similarity computation. 

-normalized embedding vectors ei v = fV (vi) ∈ Rd and ei t = fT (ti) ∈ Rd respectively. For a batch of size b , we denote 

the image and text embeddings as matrices Ev ∈ Rb×d and Et ∈ Rb×d . 

The core learning objective in CLIP is a symmetric information noise-contrastive estimation (InfoNCE) loss (Oord et al., 

2018) that jointly aligns image-to-text and text-to-image representations. Specifically: 

Lv→t = − 
1

N 

N 

i=1 

log 
exp 

 
e i v · e it/τ 

  N 
j=1 exp 

 
ei v · e jt /τ 

 , Lt→v = − 
1

N 

N 

j=1 

log 
exp 

 
ej 
v · e jt /τ 

 

 N 
i=1 exp 

 
ei v · e jt /τ 

 

where τ is a learnable temperature parameter. The numerator corresponds to the similarity between the i -th image and 

its paired text, while the denominator sums over all possible text embeddings in the batch, normalizing the probabilities. 

In implementation, this is often computed as a symmetric cross-entropy loss using the similarity logits. As shown in 

Fig. 1, the text and image logits matrices produced by the two encoders are multiplied to get the score for every pair 

efficiently (matrix multiplication is highly optimized on modern GPUs). Let Y ∈ Rb denote the ground-truth labels 

(typically indices {0, 1, . . . , b − 1} ). The similarity logits are given by: 

Ŷv = exp(τ)EvE
⊤ 
t , Ŷt = Ŷ ⊤ 

v , 

the numerator exp 

ei v · eit/τ 

 
becomes the i -th diagonal element of Ŷv , and the denominator N 

j=1 exp 
 
ei v · e

j
t /τ 

 
becomes thei-th row sum of Ŷv 

bels Y are the indices of the diagonal eleme

robability distribution p̂ and a ground-truth o

. This allows us to express the loss in terms of cross-

entropy, where the ground-truth la nts. Recall that the general form of the 

cross-entropy loss for a predicted p ne-hot label distribution q is: 

CE(p̂, q) = − 
 

i 

qi log p̂i. 
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The contrastive loss used is the average of these two directional losses: 

LCLIP = 
1 
2 
[Lv→t + Lt→v] . 

Using this, the InfoNCE loss can be rewritten as a cross-entropy loss over the similarity logits Ŷv and the ground-truth 

labels Y . Similarly, the text-to-image loss Lt→v is derived in the same way. The final CLIP loss is computed as the mean 

of the cross-entropy losses from both modalities: 

LCLIP = 
1 
2 

 
CE 

 
Ŷv, Y 

 
+ CE 

 
Ŷt, Y 

 
. (1) 

Cross-Modal Alignment Score. To evaluate how well a model aligns modalities, the average cosine similarity between 

matched image-text pairs can be a good measure. A higher alignment score indicates stronger semantic correspondence 

and a smaller modality gap between visual and textual embeddings. Perfect alignment is achieved when ei v = ei t for all i, 

i.e., the paired image and text are mapped to the same point in the shared embedding space. Formally: 

Alignment = 
1

N 

N 

i=1 

e i v · e i t, Alignment ∈ [−1, 1]. 

3.2 MULTI-MODAL GRAPH DATASET 

Multimodal Graph Dataset. We assume a collection of N multimodal items, each consisting of an image and a textual 

description. Formally, let: 

D = 
 
(vi, ti) 

N 

i=1
, 

where vi is an image and ti is the accompanying text (title or caption) of the i -th item. Items are connected by a sparse, 

instance-level graph: 

G = (V, E), V = {1, . . . , N}, 

where a node indices an image–text pair and an edge (i, j) ∈ E encodes semantic proximity (e.g., co-purchase, co-view, 

or knowledge-graph relation). We denote the binary adjacency matrix by A ∈ {0, 1}N×N and write We denote the binary 

adjacency matrix by A ∈ {0, 1}N×N and write Aij = 1 if (i, j) ∈ E , Aii = 0 otherwise. 

Graph Masks. For a user-specified hop threshold h (default h=1 ), we construct a binary positive mask 

M+ 
ij = 1 

 
distGb (i, j) ≤ h 

 
, M+ 

ii = 0, (2) 

and negative mask M− = 1 − M+ − Ib . 
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Figure 2: SLIP training pipeline. A mini-batch of products is first sampled as a sub-graph from the Amazon co-
purchase network (bottom left). Images undergo standard data augmentation, while titles/descriptions are tokenized. 
Both modalities are encoded by a CLIP backbone. Top path. The image–text token similarities form the usual InfoNCE 
matrix: the diagonal (green) contains true pairs, off-diagonal cells (grey) act as negatives. Bottom path. The sampled 
sub-graph is converteFd to an n -hop adjacency mask that selects nodes within one hop as additional positives (purple) 
and masks the rest (light grey). Image and text features are concatenated, passed through two layers of graph attention, 
and projected to node embeddings. Applying the mask to their similarity matrix yields the structural contrastive loss. 

4 METHODOLOGY 

Fig. 2 illustrates an overview of the proposed Structure-aware Language–Image Pretraining (SLIP). Firstly, SLIP incor-

porates modality-specific Graph Attention Network (GAT) layers to encode structured relationships in images and texts, 

enhancing fine-grained relational representations with instance-level graphs (right part of Fig. 2). Secondly, we intro-

duce a structural contrastive loss that explicitly aligns the embeddings of structurally related nodes, integrating relational 

knowledge into the shared embedding space (right part of Fig. 2). We will detail the design of the modality-specific 

GAT layers in Sec. 4.1, followed by the formulation of the structural contrastive loss in Sec. 4.2. Additionally, we will 

introduce the curated Multimodal Amazon Product Co-purchase Graph Dataset in Sec. 5, which serves as a benchmark 

for evaluating the effectiveness of structure-aware vision-language pretraining methods like SLIP. 

4.1 ARCHITECTURE DESIGN 

We start from pretrained CLIP dual encoders: an image encoder fV and a text encoder fT , which produce normalized 

embeddings Ev, Et ∈ Rb×d from a batch of b image-text pairs. While these encoders effectively capture cross-modal 

correlations, they do not consider relationships among distinct image-text pairs. To address this limitation, we integrate 

relational information from an instance graph Gb associated with the current mini-batch. Each node in Gb corresponds 
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to an image-text pair, with edges indicating semantic proximity (e.g., co-purchase relationships). To propagate relational 

information, we apply two layers of Graph Attention Networks (GAT) (Veličkovi´ c et al., 2017) separately on the visual 

and textual embeddings: 

H
(l+1) 
V = GAT(H(l) 

V , A), H
(l+1) 
T = GAT(H(l) 

T , A), l = 0, 1, (3) 

where (0) 
H = Ev , 

(0) 
H = Et , and A ∈ {0, 1  }b×b

V T denotes the adjacency matrix. Through attention-based aggregation, 
(2) 

HV and (2) 
HT encode neighborhood context specific to their modalities, reflecting visual similarity or textual relatedness. 

Then to integrate these modality-specific relational embeddings, we concatenate and project them into a common node 

embedding space via a lightweight projection: 

Z = ϕ( 
 
H (2) 

V ∥H (2) 
T 

 
) ∈ Rb×d , (4) 

where ϕ is a single projection with nonlinear activation and normalization, and Z is ℓ2 -normalized. This node embedding 

Z explicitly encodes structural relationships between nodes and serves as the basis for structural contrastive learning. 

4.2 STRUCTURAL CONTRASTIVE LEARNING OBJECTIVE 

We design a structural contrastive loss, an adaptation of the InfoNCE loss defined in Eq. 1, to explicitly inject structural 

supervision. In the original InfoNCE (used in CLIP), each sample has exactly one positive (the paired text or image), and 

the rest of the batch serves as negatives. The model learns to maximize similarity with the positive and minimize it with 

the negatives using a softmax-based cross-entropy formulation. 

We generalize this idea to graph settings: instead of treating only the matched pair as the positive, we treat all graph-

connected nodes as positives. That is, the positive set becomes a masked subset of the batch defined by the graph structure. 

This generalization requires modifying the loss to handle multiple positives and an arbitrary mask of negatives. We 

formulate as follows: let Z ∈ Rb×d be the matrix of normalized node embeddings output by GAT layers, representing a 

batch of b multimodal items. We define the pairwise similarity matrix as S = τ−1 · Z · Z⊤ , where τ is a temperature 

parameter. In order to turn the similarity scores into probabilities over the batch, we apply a row-wise softmax operation. 

Notably, we use log-softmax similarly to the original InfoNCE to avoid numerical instability: 

log Pi,j = log 
exp(Sij) b 
k=1 exp(Sik) 

. 

The graph loss is given by: 

Lgraph = − 
1 

∥M+∥ + ϵ 

 

i,j 

M+ 
i,j · log Pi,j , (5) 

where M stands for the binary positive graph mask introduced in Eq. 2, and ∥M+∥ denotes the number of positive pairs. 

To maintain the cross-modal alignment capability of CLIP, we retain the original implementation of InfoNCE loss as 

defined in Eq. 1, ensuring direct image–text correspondence. This loss encourages the model to align paired image and 
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text embeddings while separating unpaired ones in the shared embedding space: 

Lclip = 
1 
2 

 
CE 

 
Ŷv, Y 

 
+ CE 

 
Ŷt, Y 

 
. 

For tasks that benefit from class supervision, we optionally introduce an auxiliary classifier applied to the learned node 

features. Depending on whether the graph-enhanced path is active, the input features are either the GNN-fused representa-

tions or the concatenated outputs of the CLIP encoders. The classifier consists of a single linear projection C = Linear(Z) 

, where Z ∈ RN×d′ 
denotes the input features and d′ is the feature dimension (either d or 2d , depending on fusion strat-

egy). The output C ∈ RN×C represents class logits for C target categories. To train the classification head, we use a 

standard cross-entropy loss over the predicted class distribution. Let Yi,c ∈ {0, 1} be the one-hot ground-truth label for 

instance i and class c , and softmax(Ci)c be the predicted probability. The loss is computed as: 

Laux = − 
1 
N 

N
i=1 

C 

c=1 

Yi,c · log (softmax(Ci)c) . (6) 

Therefore, the final training loss combines cross-modal alignment Eq. 1, structural alignment Eq. 5, and auxiliary classi-

fication loss Eq. 6: 

Ltotal = Lclip + λgraphLgraph + λauxLaux, (7) 

where we empirically pick hyperparameters λgraph = 0.05 and λaux = 0.1 are set to balance the magnitude of instance-

level modality alignment loss, structured relational coherence loss, and auxiliary classification supervision loss. 

5 DATASET 

Based on the Amazon Products dataset introduced by Hou et al. (2024), we construct Multimodal Amazon Product 

Co-purchase Graph Dataset, ƒa comprehensive multimodal graph that integrates textual, visual, and structural infor-

mation. Each product is represented through textual descriptions (titles and detailed specifications) and corresponding 

high-resolution product images. All products are organized within a hierarchical category taxonomy (e.g., “Electronics 

> Smartphones > Accessories”). We select different category granularities across subsets based on class diversity and 

representativeness at that specific level. 

Purchase records initially create a bipartite graph between consumers and products. We derive our co-purchase graph 

by connecting products that share common purchasers (second-order connections). To ensure data quality and statistical 

robustness, we employ two filtering mechanisms: (1) k-core decomposition with k = 5 , which recursively removes 

nodes with fewer than 5 connections until all remaining nodes have at least 5 connections, preserving only the dense, 

stable subgraph where meaningful patterns can emerge; and (2) co-purchase frequency filtering, retaining only edges 

representing products co-purchased at least 3 times by different users. Frequency filtering is important for identifying 

meaningful product associations that represent actual shopping patterns rather than random coincidences. This dual 

filtering approach eliminates noise from sparse interactions, reduces the impact of outliers, and ensures that captured 

co-purchase relationships reflect genuine consumer behaviors rather than coincidental or one-time purchasing decisions. 
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Figure 3: A 10-node subgraph sampled from the curated dataset (Electronics) 

Fig. 3 illustrates an example product co-purchase graph segment, visually highlighting the structural connections among 

products such as routers, switches, and other electronic devices. Nodes indicate individual products, and edges represent 

co-purchase relationships. The graph structure reveals an intuitive pattern: immediate neighbors (first-hop connections) 

typically represent complementary products rather than similar ones, as consumers rarely purchase identical items multiple 

times, but instead buy components that work together (e.g., a laptop and its compatible charger, instead of buying two 

laptops). In contrast, second-hop neighbors—products connected through an intermediary node—tends to be more similar 

to the original item. This pattern emerges naturally from consumer behavior, where complementary purchases create first-

hop connections, while similar products become linked indirectly through their shared complementary items, forming a 

cohesive network of related products with distinct first-hop and second-hop relationship characteristics. 

Main Category Nodes (k) Edges (k) CLIP-T Score ± Std.dev 

Title Description 

Video Games 13 233 33.9 ± 4.3 30.6 ± 4.5 
Baby Products 14 272 31.7 ± 4.1 31.0 ± 4.0 
Office Products 16 90 32.8 ± 4.4 30.5 ± 4.5 
Arts/Crafts/Sewing 28 197 31.8 ± 4.6 29.4 ± 4.8 
CDs & Vinyl 36 845 26.3 ± 6.1 29.1 ± 5.9 
Grocery & Food 50 1,042 35.5 ± 4.3 32.4 ± 4.9 
Automotive 57 273 30.8 ± 3.8 28.8 ± 3.9 
Toys & Games 58 395 33.3 ± 3.9 31.2 ± 4.5 
Movies/TV 60 2,118 33.7 ± 5.1 31.1 ± 4.9 
Health/Household 73 1,436 34.1 ± 4.6 32.3 ± 4.9 
Beauty & Care 87 1,841 32.8 ± 4.1 30.9 ± 4.3 
Electronics 98 2,015 31.4 ± 3.7 29.3 ± 3.9 
Clothing/Shoes 172 1,873 31.3 ± 3.4 29.5 ± 3.9 
Books 194 3,988 32.9 ± 5.0 28.9 ± 4.7 

Table 1: Multimodal Amazon Product Co-purchase Graph Dataset statistics with CLIP-T scores (mean ± std), evaluating 
the semantic alignment between textual descriptions of products and their images. Nodes and edges are counted in 
thousands (k), excluding entries with missing or non-compliant data (invalid images, empty titles/descriptions). CLIP 
scores quantify text-image alignment to filter low-quality pairs. 

Tab. 1 summarizes key statistical properties of the processed Amazon product dataset after rigorous data quality checks. 

To ensure robust multimodal alignment, we filtered out entries with incomplete data, such as missing titles, inadequate de-

scriptions, or low-quality images. Semantic alignment between textual and visual components is quantified using CLIP-T 

scores, providing a measure of the coherence between images and their corresponding textual descriptions. Higher scores 
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reflect stronger semantic congruence, guiding the systematic exclusion of ambiguous or mismatched product representa-

tions that could degrade model training and evaluation. 

Overall, the Amazon Products Multimodal Graph presents an ideal and robust benchmark for evaluating structure-aware 

multimodal models (Luo et al., 2022). By combining text, image, and structured contextual information, this dataset en-

ables a comprehensive assessment of models’ capabilities to effectively integrate multimodal inputs and exploit relational 

contexts to enhance performance on tasks such as product retrieval, classification, and recommendation. 

6 EXPERIMENTS 

Our experimental evaluation aims to assess the effectiveness of SLIP against existing state-of-the-art contrastive vision-

language models. We first describe the experimental setup (Sec.6.1), then present results on retrieval tasks (Sec. 6.2), 

followed by ablation studies exploring key design choices (Sec. 6.3). 

6.1 EXPERIMENTAL SETUP 

Implementation. We implement our structure-aware approach by extending the CLIP architecture (Radford et al., 

2021). Specifically, we utilize the openai/clip-vit-base-patch16 (patch32) variants, which employs a 

ViT-B/16 (32) vision encoder and a transformer-based text encoder. Our graph-aware components consist of dual Graph 

Attention Networks (GATs) that process image and text embeddings separately before fusion. Each GAT layer uses a hid-

den dimension of 512 units with 4 attention heads and a dropout rate of 0.1 for regularization. This configuration allows 

the model to capture and propagate structural information across the graph while maintaining computational efficiency. 

Training Details. A series of optimization strategies is adopted to enhance training efficiency and model performance. 

Our approach employs discriminative fine-tuning with varying learning rates across the model hierarchy, where deeper 

layers use the base rate of 1 × 10−5 while gradually increasing rates for shallower layers by a factor of 0.8. This approach 

allows different layers to adapt at appropriate rates. Shallower layers receive higher rates to adjust low-level feature 

extraction, while deeper layers handling semantic information receive lower rates for more subtle refinement. This opti-

mization strategy improves overall model performance by recognizing the distinct roles of different network components. 

The graph components are optimized separately with a higher learning rate ( 4 × 10−3 ) than the pre-trained CLIP com-

ponents to allow faster adaptation to the structural information as we are training from scratch. The training schedule 

extends up to 50 epochs with early stopping based on the validation metric, with a patience of 10 epochs and a minimum 

delta of 0.001. To manage memory constraints while training with larger batch sizes, we employ gradient checkpointing, 

trading computation for memory efficiency. We also implement a linear learning rate scheduler with warmup, using 500 

warmup steps and gradually decreasing the learning rate to 0 for the remaining training steps to stabilize the early phases 

of training and prevent unstable gradients. 

Dataset Preparation. For our experiments, we mainly focus on the Electronics subset of our curated Multimodal 

Amazon Product Co-purchase Graph Dataset introduced in Sec. 5 for its moderate size. The dataset is split using a 60%-

10%-30% ratio for training, validation, and testing, respectively, ensuring sufficient data for model training while reserving 

a substantial portion for comprehensive evaluation. Through preliminary experiments, we determined that product titles 
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serve as more informative textual components than full descriptions for our retrieval tasks, likely due to their concise 

nature and higher information density. Consequently, we primarily use product titles as the text modality in our main 

experiments. 

Evaluation Metrics. We evaluate the performance of our model and baselines using standard information retrieval 

metrics that capture different aspects of retrieval quality. Mean Reciprocal Rank (MRR) serves as our primary metric, 

offering a balanced assessment of overall retrieval performance with emphasis on higher ranks. We also report Recall@K 

for K=1, 5, and 10 to measure the model’s ability to retrieve relevant items within the top-K results. Additionally, we 

track Mean and Median Rank metrics to provide an overview of the distribution of retrieval positions across the test set. 

Baselines. For our evaluation, we compare SLIP exclusively against the original CLIP model. We focus on this single 

baseline for several reasons: First, CLIP represents the canonical dual-encoder architecture for vision-language alignment 

and serves as the direct foundation for our work, making it the most relevant point of comparison. Second, CLIP’s 

performance characteristics are well-documented and understood across the research community, providing a reliable 

benchmark. Third, our primary contribution is the integration of structural information into the contrastive learning 

framework, rather than architectural innovations that would necessitate comparison against the full spectrum of vision-

language models. Finally, this focused comparison allows us to isolate the specific impact of our structural enhancements 

while controlling for other variables. By demonstrating improvements over CLIP, we establish a clear proof of concept 

for structure-aware vision-language alignment that can potentially extend to other architectures in future work. 

6.2 RETRIEVAL RESULTS 

Method MRR ↑ Rank ↓ Top- k Recall ↑ 

i2t t2i Mean Med Mean @1 @5 @10 

CLIP (fine-tuned) 0.518 0.522 0.520 2 133.4 0.403 0.659 0.743 
SLIP (ours, graph) 0.585 0.582 0.584 2 93.4 0.478 0.712 0.786 

Table 2: Main comparison of cross-modal retrieval performance between our proposed SLIP model and baseline CLIP 
fine-tuning. We evaluate retrieval in both directions—Image-to-Text (I2T) and Text-to-Image (T2I)—using standard 
metrics: MRR, median and mean rank (lower is better), and top- k recall at k = 1 , 5 , and 10 (higher is better). All 
models are trained under the same optimization schedule. Best performance in each metric is highlighted. 

Our main results, presented in Tab. 2, demonstrate that SLIP consistently outperforms the fine-tuned CLIP baseline across 

all retrieval metrics. On the Electronics dataset, SLIP achieves an average MRR of 0.584 compared to CLIP’s 0.520, 

representing a substantial 12.3% relative improvement. This performance gain is consistent across both retrieval directions 

(image-to-text and text-to-image), indicating that the structural information benefits bidirectional cross-modal alignment 

equally. 

The improvement in top-1 recall is particularly noteworthy, with SLIP achieving 0.478 versus CLIP’s 0.403, representing 

an 18.6% relative gain. This suggests that structural context information significantly enhances the model’s ability to 

identify the correct match as the top result. The improvements in recall at higher ranks (R@5, R@10) are also substantial 

but less dramatic, indicating that the benefits of structural context are most pronounced when discriminating between 

closely related candidates. 
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Mean rank statistics further highlight SLIP’s advantage, with our model achieving a mean rank of 93.4 compared to 

CLIP’s 133.4. This 30% improvement suggests that SLIP makes fewer catastrophic errors where the correct match is 

ranked very low. Interestingly, the median rank remains at 2 for both models, indicating that both perform well on typical 

cases, but SLIP handles challenging examples more robustly. 

w/o graph 

o  graph 

Figure 4: Qualitative retrieval comparison for the query title “Garfrfin Delorme Atlas & Gazetteer Paper Maps - Alaska, 
AA-000004-000”. The top row shows the top ten image results from CLIP fine-tuned without graph supervision (w/o 
graph), and the bottom row shows the corresponding results from SLIP with graph supervision (w/ graph). True matches 
are highlighted with a colored border and annotated with their retrieval rank. 

Here we provide a visual example to better showcase SLIP’s unique advantages. Fig.4 demonstrates the qualitative 

improvement in text-to-image retrieval when incorporating graph-aware supervision. It compares retrieval results for a 

specific product query about an Alaska atlas map. Without graph supervision, the fine-tuned CLIP model prioritizes 

visually similar items—such as generic road-trip photos and GPS device screenshots—placing the actual atlas at rank 12. 

This indicates a reliance on low-level visual cues rather than semantic context. In contrast, SLIP’s graph-aware training 

improves relevance: the Alaska atlas appears at rank 1, followed by other region-specific maps (Arizona, detailed U.S. 

topographic sheets) and relevant cartographic products in the top 5. By injecting co-purchase and categorical relationships, 

SLIP learns to group semantically related map products together, yielding far more precise retrieval for specialized queries. 

6.3 ABLATION STUDIES 

To understand the contribution of different components and hyperparameters in our framework, we conducted extensive 

ablation studies. 

Batch Graph MRR ↑ Rank ↓ Top- k Recall ↑ 

i2t t2i Mean Med Mean @1 @5 @10 

64 w/o G 0.493 0.489 0.491 3 117.3 0.367 0.638 0.729 
64 w/ G 0.434 0.430 0.432 4 131.5 0.304 0.584 0.689 

128 w/o G 0.503 0.502 0.502 2 109.3 0.378 0.651 0.741 
128 w/ G 0.468 0.471 0.470 3 135.2 0.346 0.618 0.711 

256 w/o G 0.511 0.516 0.514 2 134.3 0.395 0.656 0.742 
256 w/ G 0.512 0.518 0.515 2 129.4 0.399 0.654 0.737 

512 w/o G 0.519 0.523 0.521 2 128.3 0.401 0.666 0.746 
512 w/ G 0.541 0.541 0.541 2 118.5 0.429 0.678 0.757 

1,024 w/o G 0.518 0.522 0.520 2 133.4 0.403 0.659 0.743 
1,024 w/ G 0.585 0.582 0.584 2 93.4 0.478 0.712 0.786 

Table 3: Ablation study on the sub-graph batch size used during training. For each size, we compare a baseline CLIP 
fine-tune without graph supervision (w/o G) against our structure-aware variant with graph supervision (w/ G). Higher is 
better for MRR and Recall, lower is better for Rank. The best mean-MRR at each batch size is highlighted. 
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Impact of Batch Size. Tab. 3 explores how graph-based learning interacts with batch size. For smaller batches (64 and 

128), the baseline CLIP outperforms the graph-enhanced model. As batch size increases to 256, performance equalizes, 

and at larger batch sizes (512 and 1024), the graph-enhanced model demonstrates clear superiority. This pattern reveals 

a crucial insight: effective graph-based learning requires sufficient context to extract meaningful structural patterns. With 

small batches, the subgraphs are too sparse and disconnected to provide useful signals, potentially introducing noise 

instead. At 1024 batch size, where we observe maximal gain, the subgraph likely contains enough connected components 

and structural diversity to enable effective propagation of contextual information. 

Configuration MRR ↑ Rank ↓ Top- k Recall ↑ 

Variant G Aux DLR i2t t2i Mean Med Mean @1 @5 @10 

CLIP fine-tune (baseline) - - ✓ 0.518 0.522 0.520 2 133.4 0.403 0.659 0.743 
+ Graph only ✓ - ✓ 0.597 0.596 0.597 2 114.1 0.492 0.725 0.790 
+ Graph + Aux ✓ ✓ ✓ 0.585 0.582 0.584 2 93.4 0.478 0.712 0.786 
+ Graph + Aux, no DLR ✓ ✓ - 0.565 0.567 0.566 2 134.4 0.460 0.695 0.764 

Table 4: Component ablation on the large-batch (1,024) setting. All models use the same base learning rate 1.6 × 10−4 

. We successively add graph supervision (G), the auxiliary classification head (Aux), and the discriminative layer-wise 
learning-rate schedule (DLR) for each layer decay by 0.8 . Higher is better for MRR and Recall; lower is better for Rank. 

Component Analysis. Tab. 4 isolates the contribution of individual components in our framework. The ”Graph only” 

variant, which incorporates structural supervision without auxiliary classification, achieves the highest MRR (0.597). This 

suggests that graph-based contrastive learning alone provides the strongest signal for cross-modal alignment. Adding the 

auxiliary classification head (”Graph+Aux”) slightly decreases MRR to 0.584 but improves mean rank performance from 

114.1 to 93.4, indicating fewer extremely low rankings. The discriminative learning rate (DLR) schedule proves beneficial, 

as removing it (”Graph+Aux, no DLR”) reduces MRR to 0.566. 

These ablations reveal important design considerations: (1) graph supervision provides the strongest boost to retrieval 

performance, (2) auxiliary classification helps regularize the model and improves worst-case performance, and (3) layer-

specific learning rates are important for fine-tuning pretrained models with new architectural components. The optimal 

configuration balances these elements to achieve robust performance across different evaluation metrics. 

Overall, our ablation studies demonstrate that the structural contrastive learning approach is most effective when pro-

vided with sufficiently large batch sizes to capture meaningful graph context, and when complemented by appropriate 

optimization strategies to balance the different learning objectives. 

7 DISCUSSION 

7.1 CHOOSING THE RIGHT HOP-DISTANCE FOR POSITIVES 

A central design choice in SLIP is the selection of which n-hop neighbors to treat as positive pairs. Intuitively, immediate 

neighbors (1-hop) often represent complementary products (e.g., a laptop and its charger), whereas 2, 3-hop nodes more 

frequently correspond to similar or semantically related items (e.g., two different laptop models), as discussed in Sec. 5. 

In Fig. 5, we compute the cosine similarity between all image and text pairs within the sampled product co-purchase 

graph, and grouped by hop distances. For each training condition (e.g., pretrained CLIP, fine-tuned with/without graph 
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   Pretrained CLIP SLIP (w/ 1-hop graph loss) Fine-tuned CLIP (no graph)

Figure 5: Cosine similarity distributions between cross-modal embeddings at different graph hop distances. We 
show the density estimates of cosine similarity between image and text embeddings, grouped by hop distance in the 
product co-purchase graph: 0-hop (self), 1-hop (direct neighbor), 2-hop, and 3-hop. 

supervision), the similarity distributions are then visualized using kernel density estimation (KDE) to assess how well 

the model separates semantically or structurally related nodes. Our empirical study of CLIP’s raw cross-modal cosine-

similarity distributions (on the left of Fig. 5) confirms this intuition. Before any graph-aware training, the 0-hop (self) 

similarities peak at the highest values, while 1-hop similarities exhibit a heavy tail extending toward the 0-hop mode, 

suggesting that some 1-hop pairs are nearly as aligned as true positives. By contrast, 2- and 3-hop similarities cluster 

tightly at lower values, indicating they rarely appear as strong “false” positives under vanilla CLIP. 

When we train SLIP using only 1-hop neighbors as positives (in the middle of Fig. 5), two effects emerge: (i) the 0-hop 

curve shifts leftward and sharpens, reflecting that the model has learned to distinguish exact matches from all others more 

cleanly; and (ii) the 1-hop curve shifts rightward, showing that structurally connected complements have been pulled 

closer in the embedding space. This simultaneous sharpening of 0-hop and boosting of 1-hop similarities validate our 

choice of 1-hop as the sweet spot for relational regularization. In contrast, a run without any graph loss (on the right of 

Fig. 5) fails to produce these shifts: the 0-hop distribution retains its heavy right tail (false positives remain), and the 1-hop 

distribution shows little movement, indicating no structural alignment. 

Why not use 2-hop neighbors alone? Although 2-hop items are often semantically similar, they also include a mix of both 

complementary and unrelated products (e.g., a laptop may be 2-hop connected to printer ink via a charger link). What 

makes things worse is that there are exponentially more 2-hop neighbors than 0 or 1-hop neighbors. signal. Treating all 

2-hop nodes as positives risks introducing noise into the contrastive signal, weakening the model’s ability to discriminate 

exact matches. By confining positives to 1-hop, we strike a balance between semantic breadth and label precision. 

Treating all 2-hop nodes as positives risks introduces noise and weakens the model’s ability to discriminate exact matches. 

7.2 TOWARDS TEMPORAL GRAPH REFINEMENT 

Our current co-purchase graph aggregates relationships over the entire history of user behavior. However, consumer 

patterns evolve: one rarely buys two identical tablets on the same day, but may replace a tablet with a newer model years 

later. Consequently, static co-purchase edges can conflate complementary and sequential relationships, adding noise to 

both 1- and 2-hop neighborhoods. A promising future direction is to partition co-purchase data by timestamp—e.g. 

training with only edges formed within the last year—and to weight edges by recency. Such a time-aware graph could 

yield cleaner 2-hop positives (truly semantically equivalent items). 

14 



REFERENCES 

Timothy E. J. Behrens, Timothy H. R. Muller, James C. R. Whittington, Scott Mark, Aviv B. Baram, Kimberly L. Stachen-

feld, and Zeb Kurth-Nelson. What is a cognitive map? organising knowledge for flexible behaviour. Science, 360 

(6394):eaat6766, 2018. doi: 10.1126/science.aat6766. 

Ting Chen, Spyros Gidaris, Armand Joulin, Ishan Misra, et al. Pali: A jointly-scaled multilingual language–image model. 

In arXiv preprint arXiv:2209.06794, 2022. 

Yen-Chun Chen, Linjie Li, Luheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter: 

Universal image-text representation learning. In ECCV, 2020. 

Wonjae Cho, Jiahui Yim, Jung-Woo Ha, et al. Unifying vision-and-language tasks via text generation. In ICML, 2021. 

Pengyuan Feng, Xianglong Huang, and Xiaopeng Pei. MKVSE: Multimodal knowledge-enhanced visual–semantic em-

bedding for image–text retrieval. ACM Transactions on Multimedia Computing, Communications, and Applications, 

19(4), 2023. 

Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, and Jianfeng Gao. Vision-language pre-training: Basics, 

recent advances, and future trends. arXiv preprint arXiv:2210.09263, 2022. 

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging language and items for 

retrieval and recommendation. arXiv preprint arXiv:2403.03952, 2024. 

Yizhou Huang, Haitao Lin, Xing Di, and Hua Xiang. Structure-clip: Towards scene-graph knowledge to enhance 

multi-modal structured representations. In Proceedings of the AAAI Conference on Artificial Intelligence, 2024. 

Yinfei Jia, Yi-Ting Yang, Chao Xia, Yi Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yonghui Sung, Zhen Li, and Tom 

Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In Proceedings of 

the 38th International Conference on Machine Learning, 2021. 

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Hoi. Align before fuse: 

Vision and language representation learning with momentum distillation. In NeurIPS, 2021. 

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training for unified 

vision-language understanding and generation. arXiv preprint arXiv:2201.12086, 2022. 

Kunpeng Li, Yulun Zhang, Kai Li, and Lei Zhang. Visual semantic reasoning for image-text matching. In Proceedings of 

the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4229–4238, 2019. 

Pengfei Luo et al. Learning on multimodal graphs: A survey. arXiv preprint arXiv:2209.03299, 2022. 

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. arXiv 

preprint arXiv:1807.03748, 2018. 

Alec Radford, Jong Wook Kim, Karthik Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda 

Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In 

International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021. 

15 



Raffaele Scaringi, Giuseppe Fiameni, Gennaro Vessio, and Giovanna Castellano. Graphclip: Image-graph contrastive 

learning for multimodal artwork classification. Knowledge-Based Systems, 310:112857, 2025. doi: 10.1016/j.knosys. 

2024.112857. 

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from transformers. In EMNLP-

IJCNLP, 2019. 

Petar Veliˇ ckovi´ c, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention

networks. arXiv preprint arXiv:1710.10903, 2017. 

Xin Wang, Zhepeng Wu, Zhuowen Li, Jinhui Wu, and Eric Xing. Oscar: Object-semantics aligned pre-training for 

vision-language tasks. In ECCV, 2021a. 

Xinlong Wang, Junnan Li, Tete Yang, Xing Dai, et al. Uni-perceiver v2: A generalist model for large-scale vision and 

vision-language tasks. In NeurIPS, 2022. 

Zihang Wang, Chunyuan Li, Jianwei Zhang, Yizhe Yang, and Lei Zhou. Simvlm: Simple visual language model pre-

training with weak supervision. In arXiv preprint arXiv:2108.10904, 2021b. 

Zihao Wang, Zhe Luo, Jingye Yu, and Xiaodan Li. VQA-GNN: Reasoning with multimodal knowledge via graph neural 

networks for visual question answering. In Proceedings of the IEEE/CVF International Conference on Computer 

Vision (ICCV), 2023. 

Linyi Yang, Kevin Lin, Yuan Yao, and Shih-Fu Chang. Graph-structured referring expression reasoning in the wild. In 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3796–3806, 2020. 

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and 

Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. arXiv preprint arXiv:2111.07783, 2021. 

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship for image captioning. In Computer Vision 

– ECCV 2018, pp. 684–699. Springer, 2018. 

Yuan Yao, Feng Gao, Hang Zhao, Neil Houlsby, et al. Filip: Fine-grained interactive language-image pre-training. In 

ICML, 2022. 

Jiahui Yu, Joshua Maynez, Jimmy Ba, and Tong He. Coca: Contrastive captioners are image-text foundation models. In 

arXiv preprint arXiv:2205.01917, 2022. 

Tianyu Yu, Hua Lu, Yuqi Huang, and Tao Mei. ERNIE-ViL: Knowledge-enhanced vision–language representations 

through scene graph. CoRR, abs/2006.16934, 2021. URL https://arxiv.org/abs/2006.16934. 

16 

https://arxiv.org/abs/2006.16934

	Introduction
	Related Work
	Preliminaries
	Background on CLIP
	Multi-modal Graph Dataset

	Methodology
	Architecture Design
	Structural Contrastive Learning Objective

	Dataset
	Experiments
	Experimental Setup
	Retrieval Results
	Ablation Studies

	Discussion
	Choosing the Right Hop-Distance for Positives
	Towards Temporal Graph Refinement


