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Abstract 

This study investigates the forecasting of implied volatility (IV) for carbon options in the 

European Union Allowance (EUA) market using both econometric and machine learning 

methodologies. Given the carbon market’s sensitivity to various macroeconomic and financial 

influences, we construct a series of volatility prediction models that integrate macroeconomic, 

commodity, and equity-related information. In addition to benchmark GARCH(1,1) and Long 

Short-Term Memory (LSTM) models, we extend the analysis by incorporating exogenous 

variables through the GARCH-MIDAS (Mixed Data Sampling) framework and further propose 

an LSTM-MIDAS architecture, which enables the integration of mixed-frequency data into a 

deep learning structure. Dynamic Principal Component Analysis (DPCA) is employed to reduce 

the dimensionality of factor groups while retaining their temporal dependencies. 

Empirical results show that macroeconomic uncertainty—represented by the Economic Policy 

Uncertainty (EPU) index—significantly improves forecasting performance. Among machine 

learning models, the LSTM model incorporating commodity price factors (referred to as LSTM-

COMO) achieves the highest accuracy, while GARCH-MIDAS-EPU outperforms other 

econometric alternatives. These findings highlight the importance of combining multifactor 

inputs and mixed-frequency techniques in modeling carbon option volatility. 

Keywords: Carbon Market; Implied Volatility; GARCH-MIDAS; LSTM-MIDAS; Mixed-

Frequency Data; Economic Policy Uncertainty; EUA Options 



  

 

1. Introduction 

1.1 Development of the Carbon Market and European Union Allowance (EUA) 

The  issue  of global climate  change  has become increasingly critical in the past decades, prompting 

the international community to prioritize  the reduction of greenhouse  gas emissions. In response, 

various countries  have  been actively exploring the establishment of carbon market mechanisms as  

a  means of  achieving emission reduction targets. Carbon markets utilize  market-based approaches  

to transform carbon emission allowances into tradable commodities, thereby incentivizing 

companies to voluntarily reduce  their emissions. The  fundamental principle  behind carbon markets  

is to attribute  economic  value to emission allowances, enabling firms to make  balanced decisions  

between environmental responsibility and economic cost.  

The  carbon market concept first gained traction as a  policy instrument aimed at addressing climate  

change.  One  of the  most  significant milestones in the development  of the  carbon market was the  

adoption of the Kyoto Protocol in 1997, which set legally binding emission reduction targets for  

developed countries. The  protocol laid the groundwork for  the creation of emission trading systems 

(ETS), allowing countries with surplus emission allowances to trade  them with countries 

exceeding their emission limits.  

To accelerate the  reduction of greenhouse  gas emissions, the European Union Emissions Trading 

Scheme (EU ETS) was launched in 2005. As the world’s most  mature  and  largest carbon market, 

the EU  ETS serves as a  cornerstone  of the EU’s climate  policy. The  system is currently in its fourth  

phase  (2021–present), during which the EU  has  implemented stricter carbon reduction targets,  

raising the 2030 emission  reduction goal from 40%  to 55%. Additionally,  the annual reduction rate  



  

   

    

 

    

   

      

       

 

 

    

of the total volume  of  allowances has been increased, reflecting the  EU’s  commitment to more  

aggressive climate  action.  

Within the EU  ETS framework, European Union Allowances (EUA) function as the primary  

tradable unit, representing the right to emit one  tone of carbon dioxide  or its equivalent. EUA 

futures play a  pivotal role  not only in helping  companies manage  their  emission risks  but  also in  

providing an effective  financial instrument for  speculative trading (Ye, 2021; Szolgayová et  al.,  

2014). Consequently, EUA options are  of considerable significance  as they offer both risk  

management solutions for companies  and  trading opportunities for  institutional and individual 

investors. Understanding the dynamics of EUA option pricing  is essential for  both market 

participants and policymakers, as it  directly impacts the effectiveness of carbon market  

mechanisms.  

1.2 Factors Influencing EUA Price Dynamics and Related Literature 

Existing studies have identified numerous exogenous factors that may influence EUA price 

movements, including macroeconomic factors (Chevallier, 2009; Ding et al., 2024; Xiao, 2022), 

commodity market factors (Gronwald et al., 2011; Koenig, 2011), and equity market factors (Wen 

et al., 2020). However, many of these studies tend to focus on the effects of a single factor or a 

specific category of factors, and relatively few have attempted to comprehensively incorporate a 

wide range of potential variables to analyze the price behavior in the carbon market. This suggests 

that there may be room for further exploration by adopting a more holistic and multifactorial 

perspective. 

In the context of carbon market options, various option pricing models have been developed to 

better capture the unique characteristics of these financial instruments. Traditional models, such 



    

    

 

 

  

     

   

 

    

  

 

    

  

  

 

 

  

   

    

   

    

  

as the Black-Scholes (B-S) model, have played a fundamental role in option pricing. However, 

recognizing the complexity of carbon market options, researchers have explored a range of 

enhanced methodologies. A significant portion of the literature has focused on combining the 

GARCH family of models with classical option pricing techniques, including the Black-Scholes 

model, fractional Brownian motion (FBM), and Monte Carlo simulations (Liu, 2021; Wu, 2022; 

Tang 2023). For example, Liu Z. applied a combination of the GARCH model and the B-S pricing 

formula to analyze the daily closing prices of EUA options, illustrating how volatility modeling 

can complement traditional pricing approaches. 

In recent years, machine learning (ML) methods have gained significant traction in the field of 

option pricing due to their ability to model complex, non-linear relationships that traditional 

methods may not fully capture. Unlike classical approaches that rely on fixed assumptions, ML 

techniques offer a flexible and adaptive framework for analyzing dynamic market conditions. 

Several studies have demonstrated the effectiveness of ML models in improving option pricing 

accuracy and capturing intricate interactions among various influencing factors (Abrell et al., 2022; 

Zhang et al., 2025; Shang et al., 2025). 

1.3 Predicting Carbon Option Prices Using Implied Volatility 

In the field of financial research, implied volatility (IV) is widely recognized as an essential 

element for option pricing. Unlike historical volatility, which is derived from past price data, IV 

is forward-looking and reflects the market's expectations of future price fluctuations. This 

characteristic makes IV particularly valuable for analyzing options, as it inherently incorporates 

information from current market conditions and investor sentiment. Previous research has 

highlighted the predictive power of implied volatility over historical volatility (Beckers, 1981; 



  

     

  

  

 

    

      

   

     

    

     

  

 

 

 

     

   

    

   

    

  

Chiras et al., 1978). Subsequent research has aimed to refine these models by incorporating larger 

sample sizes and accounting for additional variables, where researchers have increasingly sought 

to incorporate multifactorial perspectives, extending beyond traditional models to include 

sophisticated forecasting techniques based on machine learning and GARCH-type models. 

(Martens et al., 2004; Ahoniemi, 2009; Vrontos et al., 2021). 

However, existing research on carbon market options seldom directly employs IV as the primary 

predictor for option pricing. Most studies focus on price dynamics or volatility modeling rather 

than utilizing IV itself for prediction. Considering the distinct nature of carbon market options— 

characterized by regulatory complexities, speculative interests, and their role in environmental 

compliance—leveraging IV as a central forecasting variable could possibly yield more accurate 

and insightful results. Hence, this study aims to bridge this gap by investigating the predictive 

potential of IV in the context of carbon option prices. 

1.4 Overall Framework 

To address the challenges in predicting carbon option prices, this study first explores the 

application of GARCH models and Long Short-Term Memory (LSTM) neural networks as 

benchmark models for IV prediction. Given the multifaceted nature of the carbon market, where 

IV is influenced by diverse exogenous factors, we integrate various types of factors, including 

commodity prices, equity indices, and macroeconomic indicators. Due to the large number of 

factors within the same category, we deployed Dynamic Principal Component Analysis (DPCA) 

to reduce dimensionality while preserving the temporal structure inherent in financial time series 

data. 



    

   

 

  

  

  

  

   

 

  

    

    

       

 

    

   

     

  

  

   

    

  

  

However, some factors, such as Economic Policy Uncertainty (EPU) within macroeconomic 

indicators, do not have the same frequency as daily option data. Traditional GARCH models are 

not well-suited for handling mixed-frequency data. To address this issue, Engle et al. (2013) 

proposed the GARCH-MIDAS (Generalized Autoregressive Conditional Heteroskedasticity -

Mixed Data Sampling) model. This model decomposes the volatility series into short-term and 

long-term components, with the short-term component captured by the GARCH model and the 

long-term component modeled through MIDAS to incorporate the influence of low-frequency 

variables. This approach effectively captures the impact of macroeconomic factors on daily 

volatility in financial markets. 

In this study, we first adopt the GARCH-MIDAS framework to address the challenge of integrating 

mixed-frequency data in volatility forecasting. Additionally, we experiment with applying the 

MIDAS methodology within a neural network context by combining it with the LSTM model, 

thereby constructing the LSTM-MIDAS model. This attempt seeks to capture the influence of both 

high-frequency and low-frequency explanatory variables on carbon option volatility, utilizing the 

complementary strengths of both econometric and machine learning techniques. 

By employing these advanced modeling techniques, we aim to investigate which factors 

significantly influence the implied volatility of carbon options and achieve more accurate 

predictions. This study contributes to the existing literature on carbon option pricing by integrating 

multifactor modeling and mixed-frequency analysis, providing a deeper understanding of how 

diverse market factors collectively shape volatility within the carbon trading environment. 

Ultimately, the findings from this research aim to support more informed decision-making and 

strategic planning for market participants, policymakers, and researchers engaged in the evolving 

landscape of carbon finance. 



  

  

 

  

 

 

  

 

  

 

   

   

   

  

  

  

   

   

2. Data and Methodology 

2.1 Data Selection 

 Macroeconomic Uncertainty Indicator: 

The European Union Allowance (EUA) is one of the most prominent carbon trading instruments 

under the EU Emissions Trading System (EU ETS), which represents the cornerstone of the 

region’s carbon market. Considering data availability and market maturity, this study selects 

EUA option data spanning from October 12, 2022 to July 31, 2024. To ensure consistency and 

liquidity, the analysis focuses on at-the-money (ATM) call options, which are generally regarded 

as the most sensitive to implied volatility changes and are commonly used for volatility 

forecasting purposes. To improve data quality, observations with missing or zero transaction 

volume were removed. After applying these filters, a final sample of 463 daily observations was 

retained for modeling and empirical analysis. 

In addition to option prices, several external variables are included to capture the broader market 

influences on implied volatility. The Economic Policy Uncertainty (EPU) index is retrieved from 

the official website of policyuncertainty.com, and the short-term risk-free rate is sourced from 

the European Central Bank (ECB). All the other data are obtained from Barchart.com. 

The explanatory exogenous variables are grouped into three categories: 

• Economic Policy Uncertainty (EPU): Quantifies uncertainty in economic policymaking. 

Commodity Price Factors: 

• Brent Crude Oil Price: Global benchmark for energy costs. 

• UK Natural Gas Futures (UKGAS): Industrial input affecting emissions. 

• European Electricity Price Index (EEX Power): Proxy for energy demand and emissions. 

• London Metal Exchange Index (LMEX): Reflects industrial activity and carbon usage. 

https://Barchart.com
https://policyuncertainty.com


   

 

  

 

  

 

 

  

 

 

 

 

    

   

  

 

  

  

• ICE Coal Price Index: Indicator of traditional fuel usage and carbon intensity. 

Equity Market Factor: 

• EURO STOXX Volatility Index (VSTOXX): Captures financial market uncertainty. 

2.2 Main Methodology 

 2.2.1 Newton-Raphson Method for Implied Volatility Estimation 

Implied volatility (IV) is a key unobservable parameter in option pricing models such as the 

Black-Scholes model. To estimate IV from observed market option prices, this study employs 

the Newton-Raphson iterative algorithm, a widely used numerical method that solves for the root 

of a nonlinear equation. 

Given the Black-Scholes formula for a European call option: 

𝐶BS(𝑆, 𝐾, 𝑇, 𝑟, σ) = 𝑆 ⋅ 𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇 ⋅ 𝑁(𝑑2) 

where: 

ln(𝑆/𝐾) + (𝑟 + 
1 

σ2) 𝑇 2𝑑1 = , 
σ√𝑇 

𝑑2 = 𝑑1 − σ√𝑇 

and N(⋅) denotes the cumulative distribution function of the standard normal distribution. The 

Newton-Raphson method finds the implied volatility 𝜎 such that the theoretical price 𝐶BS 

matches the market-observed price 𝐶market. The update formula is: 

𝐶BS(σ𝑛) − 𝐶market 
σ𝑛+1 = σ𝑛 − 

ν(σ𝑛) 

Where 𝜈(𝜎𝑛) is the Vega of the option, i.e., the derivative of the Black-Scholes price with 

respect to volatility: ν(σ𝑛) = 𝑆 ⋅ √𝑇 ⋅ ϕ(𝑑1) 



  

 

 

 

 

 

 

 

 

  

    

 

 

 

 

  

   

  

 

Here, ϕ(⋅) is the standard normal probability density function. The iteration continues until 

convergence is achieved within a predefined tolerance. This method is implemented to recover 

the daily implied volatility (IV) series used throughout the empirical analysis in this study. 

  2.2.2 GARCH Model 

To capture the time-varying nature of financial market volatility, this study employs the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, originally 

introduced by Bollerslev (1986). GARCH models are designed to model the conditional variance 

of time series data, making them particularly suitable for financial return series, which often 

exhibit volatility clustering and heteroskedasticity. 

Let rt denote the return series, typically calculated as the difference or percentage change in 

implied volatility. The mean equation of the model is expressed as: 

2)𝑟𝑡 = μ + ε𝑡, ε𝑡 ∼ 𝒩(0, σ𝑡 

Here, μ is the constant mean return, and 𝜎𝑡
2 represents the time-varying conditional variance. 

The GARCH(1,1) specification models the variance as a function of past squared innovations 

and past variances: 

2 2 2σ𝑡 = ω + αε𝑡−1 + βσ𝑡−1 

where: 

• ω>0 is a constant term, 

• α≥0 measures the short-run impact of past shocks (ARCH effect), 

• β≥0 captures the persistence of volatility (GARCH effect). 

The GARCH model assumes that large shocks to volatility can persist over time, and the 

condition α+β<1 is required to ensure stationarity of the variance process. 



 

  

 

 

 

  

 

 

In this study, the GARCH(1,1) model serves as the benchmark for volatility modeling due to its 

simplicity and proven empirical performance in capturing volatility clustering. 

   2.2.3 GARCH-MIDAS Model 

To incorporate low-frequency explanatory variables into high-frequency volatility modeling, 

Engle et al. (2013) proposed the GARCH-MIDAS (Mixed Data Sampling) model. This approach 

decomposes the conditional variance into two multiplicative components: a short-term 

component driven by GARCH dynamics, and a long-term component driven by low-frequency 

macroeconomic or market variables.  

The model is specified as follows:  

2)𝑟𝑡 = μ + ε𝑡, ε𝑡 ∼ 𝒩(0, σ𝑡 

σ𝑡
2 = τ𝑡 ⋅ 𝑔𝑡 

Where: 

•  𝑟𝑡  captures the long-term volatility component affected by low-frequency data,  

•  𝑔𝑡  is the short-term component following a standard GARCH process:  

𝜀𝑡−1 
2 

𝑔𝑡 = 𝜔 + 𝛼 ( ) + 𝛽𝑔𝑡−1 
√𝜏𝑡−1 

The long-term component 𝑟𝑡 is modeled using a MIDAS polynomial: 

𝐾 

ln(𝜏𝑡) = 𝜃0 + ∑ 𝜃𝑘𝐵(𝑘; 𝜑1, 𝜑2) ⋅ 𝑍𝑡−𝑘 

𝑘=1 

Where:  

•  𝑍𝑡−𝑘  represents lagged low-frequency explanatory variables  

•  𝐵(𝑘; 𝜑1, 𝜑2)  is a normalized Beta weighting function that ensures recent lags are more  

heavily weighted.  



 

 

 

  

 

  

 

  

 

  

 

  

 

  
 

     

  

  

In this study, the GARCH-MIDAS framework is employed to capture the influence of 

macroeconomic and other low-frequency variables (Economic Policy Uncertainty) on the daily 

implied volatility of carbon options 

   2.2.4 LSTM Model 

The Long Short-Term Memory (LSTM) model is a specialized recurrent neural network 

designed to capture long-term dependencies in sequential data. It uses a set of gates—forget, 

input, and output—to regulate information flow and maintain memory over time, making it well-

suited for modeling complex dynamics in financial volatility forecasting. 

The architecture of an LSTM cell is composed of a series of gating mechanisms that regulate the 

flow of information through the network: 

Forget gate: 𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

Input gate: 𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

Candidate state: 𝐶𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

Cell state update: 𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡 

Output gate: 𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

Hidden state: ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) 

Here, 𝑥𝑡 represents the input at time t, ℎ𝑡 the hidden state, and 𝐶𝑡 the cell state. 𝜎 denotes the 

sigmoid activation function, and ⊙ represents element-wise multiplication. 

In this study, the LSTM model is applied to forecast implied volatility (IV) based on sequences 

of past values and relevant exogenous variables. The model parameters—including the number 

of units, learning rate, batch size, and dropout rates—are tuned to ensure optimal predictive 

performance and to prevent overfitting. 



    2.2.5 Extended LSTM-MIDAS Model 

  

 

 

  

 

   

   

 

 

 

To address the challenge of incorporating mixed-frequency data into deep learning models, this 

study adopts the extended LSTM-MIDAS framework inspired by Kamolthip (2021). Kamolthip 

(2021) proposes an elegant solution by transforming low-frequency variables into frequency-

aligned high-frequency representations using the MIDAS (Mixed Data Sampling) technique. 

This process involves applying a weighted lag structure (such as the normalized exponential 

Almon lag) to compress historical low-frequency values into a single high-frequency input 

vector. These transformed features are then concatenated with other high-frequency predictors 

and passed into the LSTM architecture, enabling the network to simultaneously capture long-

term macroeconomic effects and short-term dynamics. 

The MIDAS transformation for a low-frequency predictor 𝑥𝑡
(𝑚) sampled at frequency m is 

defined as: 

𝐽 
exp(θ1𝑗 + θ2𝑗2)

𝑧𝑡 = ∑ ω𝑗 ⋅ 𝑥𝑡
(
−
𝑚

𝑗
)
/𝑚 where ω𝑗 = 

∑𝐽 exp(θ1𝑗 + θ2𝑗2)
𝑗=0 

The resulting aligned feature 𝑧𝑡 is then fed into the LSTM along with other predictors. This 

approach enables the model to capture both low-frequency macroeconomic signals and high-

frequency market patterns. This extension allows for a comprehensive investigation of how 

various classes of exogenous information contribute to the volatility dynamics in the carbon 

options market. 

𝑗=0 

 2.2.6 Dynamic Principal Component Analysis (DPCA) 

To address the high dimensionality and multicollinearity among input variables within each 

category (e.g., multiple commodity prices), this study adopts the Dynamic  Principal Component 

Analysis (DPCA) method to extract the most informative components for  forecasting. Unlike 



 

 

   

 

 

 

  

 

 

 

 

  

 

 

 

traditional Principal Component Analysis (PCA), which ignores the temporal dependence 

inherent in time series data, DPCA captures both cross-sectional and dynamic (time-lagged) 

correlations among variables, making it more suitable for financial and economic time series. 

DPCA assumes that the multivariate time series Xt = (𝑋1𝑡, 𝑋2𝑡, … , 𝑋𝑁𝑡)⊤ can be decomposed 

into a lower-dimensional set of dynamic factors that preserve the structure of lagged covariances. 

The goal is to estimate the dynamic principal components (DPCs) that explain the maximum 

proportion of variance not only at time t, but also across a range of lags. 

Let Γ(𝑘) be the autocovariance matrix of Xt at lag k. Then the spectral density matrix of the 

process is: 

∞ 
1 

𝑓(ω) = ∑ Γ(𝑘)𝑒−𝑖ω𝑘 

2π 
𝑘=−∞ 

DPCA estimates the eigenvectors of this spectral density matrix, rather than the sample 

covariance matrix used in PCA. These eigenvectors are used to construct filters that extract 

dynamic principal components from Xt, which are then used as inputs for forecasting models. 

In this study, DPCA is applied separately to the commodity price variables to derive the leading 

dynamic component, which captures the most relevant temporal information across multiple 

commodity series. The extracted DPC is subsequently used as a consolidated input in both 

GARCH-X and LSTM-based models to enhance predictive efficiency and mitigate overfitting 

due to variable redundancy. 



  

 

 

 

 

 

 

 

 
 

  

 

3. Results 

To evaluate the forecasting performance of various models for implied volatility (IV) in the 

carbon options market, this section presents the empirical results derived from both traditional 

econometric methods and machine learning techniques. The models include the benchmark 

GARCH(1,1), several GARCH-MIDAS extensions that incorporate exogenous information from 

mixed-frequency macroeconomic and market indicators, as well as LSTM-based models 

designed to capture nonlinear patterns in the data. Furthermore, an extended LSTM-MIDAS 

model is constructed to integrate low-frequency variables into the LSTM framework, addressing 

the challenges of mixed-frequency data. 

The analysis proceeds in the following order: we begin with preliminary statistical diagnostics on 

the IV series, including tests for stationarity, normality, and the presence of ARCH effects. Next, 

we implement and evaluate the GARCH(1,1) model as a baseline. This is followed by the 

GARCH-MIDAS variants, which progressively introduce macroeconomic, commodity, and 

equity-related factors. Finally, we apply the LSTM-based models, including their MIDAS-

enhanced versions, to assess whether deep learning models can offer improved volatility 

forecasting performance. All models are evaluated based on their ability to predict future implied 

volatility and reconstruct option prices, allowing for a comprehensive comparative analysis 

across different modeling approaches. 

3.1 Preliminary Diagnostics for GARCH Modeling 

3.1.1 Descriptive Statistics 



 
  

 
  

 

 

 

 

 
  

 
 

    
    

    
 

 

Figure 1: Summary Statistics 

Figure 3.1 provides a comprehensive summary of the implied volatility (IV) series. The 

histogram suggests a moderately right-skewed distribution, which is further confirmed by the 

skewness value of 0.576 and kurtosis of -0.449, indicating the presence of a long right tail and a 

relatively flatter peak compared to the normal distribution. The IV values range between 0.213 

and 0.445, with a mean of 0.3198 and a median of 0.3079. This slight discrepancy between the 

mean and median reflects the underlying asymmetry in the distribution. 

3.1.2 Stationarity and White Noise Check 

Table 1: Augmented Dickey-Fuller Test Results for IV and differenced IV 
Series ADF Statistic P-value Stationarity 
IV -1.79401 0.383 No 
Diff(IV) -17.2705 0.000 Yes 

As shown in Table 1, the original implied volatility series fails the ADF test at the 5% 

significance level (p = 0.383 > 0.05), indicating non-stationarity. To address this, we take the 



 

 

 
  

 

 

 
     

    
    
    
    

 
   

    

first difference of the IV series. The differenced series passes the ADF test (p = 0.000 < 0.05), 

confirming stationarity. 

Figure 2:  Time Series Plot, ACF and PACF for Diff IV 

Figure 2 illustrates the differenced IV series along with its ACF and PACF plots. The time series 

plot of Diff(IV) fluctuates around a constant mean, showing no obvious trend or seasonality. 

Additionally, the ACF and PACF suggest that autocorrelation is weak and most values lie within 

the 95% confidence bands, which is consistent with a white noise process. 

Table 2: Ljung-Box Statistics 
Lag Chi-Square Degree of Freedom P-value 
12 8.55 10 0.575 
24 22.33 22 0.441 
36 34.91 34 0.425 
48 42.20 46 0.632 

To further evaluate whether the differenced IV series exhibits white noise behavior, we conduct 

the Modified Box-Pierce (Ljung-Box) Chi-Square test at multiple lags. The results in Table 2 

show that all p-values are greater than 0.05, indicating that we fail to reject the null hypothesis. 



 

 
   

 

 
  

 
 

   
   
   
   
   
   

 
  

  

 

This suggests that the differenced IV series does not exhibit significant autocorrelation and is 

approximately white noise. 

3.1.3 Conditional Heteroskedasticity and ARCH Effect Test 

Figure 3: Time Series Plot of Residuals’ Square 

Table 3: ARCH-LM Test Results 
Lag LM Statistics P-value 
1 52.31 0.000 
2 58.19 0.000 
3 60.24 0.000 
5 70.15 0.000 
10 98.21 0.000 

To examine the presence of heteroskedasticity in the differenced implied volatility (IV) series, a 

time series plot of the squared residuals is presented in Figure 3. The plot displays visible 

clustering of volatility over time, suggesting potential conditional heteroskedasticity. 

To formally test for the presence of ARCH effects, the Lagrange Multiplier (LM) test was 

performed across various lag orders. From Table 3, the LM statistics are statistically significant 

at all selected lags, with corresponding p-values below the 1% significance level. These results 



 

 

 

 

 
      

      
      
      

 
     

 

     

           

 

 

 

 

   

 

 

confirm that the error variance in the differenced IV series is time-dependent, thereby validating 

the use of GARCH-type models in subsequent volatility modeling and forecasting. 

  3.1.4 GARCH(1,1) Model Estimation 

Following confirmation of significant ARCH effects, a GARCH(1,1) model was fitted to the 

differenced implied volatility (DiffIV) series. 

Table 4: GARCH(1,1) model results 
Coefficient Estimate Std. Error t value Pr(>|t|) Significance 
0 5.524e-05 3.621e-05 1.525 0.127 
1 8.019e-02 1.440e-02 5.568 2.57e-08 *** 
1 9.155e-01 1.518e-02 60.293 < 2e-16 *** 

The GARCH(1,1) model estimated for the differenced implied volatility series is expressed as follows: 

2 2 2σ𝑡 = 5.524 × 10−5 + 0.08019 ε𝑡−1 + 0.9155 σ𝑡−1 

where α0=5.524×10−5 > 0, α1, β1 > 0, and α1 + β1 = 0.08019 + 0.9155 = 0.99569 < 1, indicating 

that the volatility process is stationary. 

According to the estimated GARCH(1,1) model, the volatility for the next 14 trading days is 

forecasted and will be used to reconstruct future implied volatility values. These results serve as 

a benchmark for evaluating alternative models introduced in the following sections. 

3.2 Forecast results with GARCH models 

To capture the volatility dynamics of carbon option markets, this section applies a series of 

GARCH-based models to forecast implied volatility (IV). Starting from a benchmark 

GARCH(1,1) framework, we extend the modeling approach by incorporating various external 

variables to assess their contribution to forecasting performance. Depending on the frequency of 

the incorporated factors, we distinguish between standard GARCH-X models (for high-

frequency variables) and the GARCH-MIDAS framework (for low-frequency macroeconomic 



 

 

  

   

 

  

 

 

 

 
       

       
       

       
 

 

 

   
        

        
        

        

indicators). The MIDAS (Mixed Data Sampling) structure enables the integration of lower-

frequency information—such as monthly policy indices—into daily volatility modeling. 

Specifically, the models implemented include: 

• A benchmark GARCH(1,1) model without external regressors; 

• GARCH models that incorporate single exogenous information such as macroeconomic 

uncertainty; 

• A multifactor GARCH-MIDAS model that integrates multiple factors derived from 

macroeconomic, commodity, and equity indicators. 

Each model’s forecasted IV series is then input into the Black-Scholes pricing formula to 

generate predicted option prices, allowing for a comparative assessment of model accuracy under 

different informational structures. 

 3.2.1 Benchmark GARCH Model 

Table 5: IV Forecast with GARCH 
Day1 Day2 Day3 Day4 Day5 Day6 Day7 

0.2432 0.2522 0.2482 0.2453 0.2489 0.2492 0.2392 
Day8 Day9 Day10 Day11 Day12 Day13 Day14 

0.2424 0.2412 0.2403 0.2395 0.2358 0.2385 0.2389 

The benchmark model employs a standard GARCH(1,1) specification without external 

regressors to forecast implied volatility. As shown in Table 5, the model produces 14-day ahead 

IV forecasts based solely on historical volatility patterns. These predicted IV values are then 

used as inputs in the Black-Scholes pricing formula to reconstruct option prices over the forecast 

horizon. 

Table 6: Forecasted Price with B-S model (GARCH) 
Date 1 2 3 4 5 6 7 

Forecast 2.95 3.25 3.08 2.73 2.98 2.93 3.23 
Actual 3.88 3.58 2.70 3.78 3.50 3.82 3.21 
Date 8 9 10 11 12 13 14 



        
        

 

 
 

   
   

 

  

  

 

 

 

 

 

 

 

  

Forecast 3.18 4.02 3.67 3.88 3.87 4.02 4.09 
Actual 4.65 3.78 4.18 4.21 4.47 4.75 4.61 

Table 7: Evaluation Metrics for GARCH Model 
MSE MAE MAPE 
4.58 2.52 11.23% 

Table 6 presents a comparison between the predicted and actual option prices during the same 

14-day forecast window. While the model successfully captures the overall direction of price 

movement, deviations from actual values are observed. Evaluation metrics shown at Table 7 

indicate a mean squared error (MSE) of 4.58, a mean absolute error (MAE) of 2.52, and a mean 

absolute percentage error (MAPE) of 11.23%, reflecting a reasonable level of forecasting 

accuracy for a baseline model. 

   3.2.2 GARCH-MIDAS and GARCH-X Models 

To enhance the predictive power of volatility modeling, this section explores a suite of extended 

GARCH frameworks that incorporate macroeconomic, commodity, and equity-based 

explanatory variables. In particular, we distinguish between two modeling approaches based on 

the frequency characteristics of the external variables: GARCH-MIDAS and GARCH-X. 

The macroeconomic component is represented by the Economic Policy Uncertainty (EPU) index, 

a low-frequency monthly variable. To properly integrate this mixed-frequency data, we apply the 

GARCH-MIDAS (Mixed Data Sampling) model, which decomposes volatility into short- and 

long-term components and allows for low-frequency drivers of high-frequency volatility. 

In contrast, both commodity and equity variables are available at the daily level. Commodity 

factors include Brent Crude Price, UK Gas, EEX Power, LMEX, and ICE Coal Price. To address 

multicollinearity and capture the underlying structure across multiple series, Dynamic Principal 



 

 

 

 

  

  

  

 

 

  
     

    

    

    

 
   

 

 

 

 

Component Analysis (DPCA) is used to extract the leading factor. The equity market is 

represented by the EURO STOXX Volatility Index (VSTOXX). Given their high frequency, 

both commodity and equity variables are incorporated using the GARCH-X model, which allows 

daily exogenous regressors to influence conditional variance dynamics directly. 

The models implemented include: 

• GARCH-MIDAS with EPU only, 

• GARCH-X with commodity factors (COMO), 

• GARCH-X with equity volatility (EQU), 

• A combined model incorporating all three factors using GARCH-MIDAS-X (EPU-

COMO-EQU), where EPU is treated through MIDAS and the others through standard 

exogenous terms. 

Table 8: Evaluation Metrics for Extended GARCH Models 
Model Type MSE MAE MAPE 

GARCH-MIDAS-EPU 3.52 1.87 8.28% 

GARCH-COMO 4.25 2.24 10.40% 

GARCH-EQU 5.92 3.25 14.72% 

GARCH-MIDAS-EPU-COMO- 3.98 2.04 9.42% 
EQU 

As shown in Table 8, the inclusion of EPU significantly improves the model’s accuracy across 

all evaluation metrics, achieving the lowest MSE (3.52), MAE (1.87), and MAPE (8.28%). In 

contrast, the EQU-based model performs the worst, suggesting that equity market volatility alone 

may not be a reliable predictor of implied volatility in the carbon market. The model based on 

commodity prices performs moderately well, and the all-factor GARCH-MIDAS variant 

achieves a balanced improvement across metrics. 



  

 

 

 

 

 

  

 

 

 

 

  

 

These results highlight the pronounced influence of macroeconomic uncertainty on carbon 

option volatility, likely due to the carbon market's sensitivity to policy shifts and regulatory 

announcements. This finding is consistent with previous studies (Li et al., 2022; Yan et al., 2021; 

Adediran et al., 2023), which underscore the role of macro-level shocks in shaping price 

dynamics in emission trading systems. 

In summary, the empirical results demonstrate that incorporating appropriate exogenous 

information—especially low-frequency macroeconomic indicators such as EPU—substantially 

enhances the accuracy of volatility forecasts in the carbon options market. The GARCH-MIDAS 

framework proves especially effective in capturing the long-term influence of macroeconomic 

uncertainty. These findings reinforce the importance of macroeconomic and policy-driven 

signals in shaping volatility in emission trading systems. 

3.3 Forecast results with LSTM models 

To establish a benchmark for machine learning-based volatility forecasting, a univariate Long 

Short-Term Memory (LSTM) neural network model is implemented using only the historical 

values of implied volatility (IV) as input. The model is designed to capture the temporal 

dependencies within the IV series and generate forward-looking volatility estimates. 

3.3.1 Benchmark LSTM Model 

The benchmark LSTM model is constructed with one hidden LSTM layer comprising 50 units, 

followed by a dense output layer with a single neuron. The model is trained over 50 epochs with 

a batch size of 16, using the Adam optimizer and mean squared error (MSE) as the loss function. 

Input data is scaled using MinMax normalization to enhance learning efficiency. 



 

 

       

       
       

       
 

        
        

        
        

        
        

 

 
   

   
 

  

 

 

 

Table 9: IV Forecast with LSTM 
Day1 Day2 Day3 Day4 Day5 Day6 Day7 

0.2498 0.2525 0.2502 0.2476 0.2467 0.2470 0.2501 
Day8 Day9 Day10 Day11 Day12 Day13 Day14 

0.2502 0.2513 0.2500 0.2487 0.2490 0.2497 0.2499 

Table 10: Forecasted Price with B-S model (LSTM)  
Date 1 2 3 4 5 6 7 

Forecast 3.46 4.02 3.56 3.34 3.28 3.45 3.87 
Actual 3.88 3.58 2.70 3.78 3.50 3.82 3.21 
Date 8 9 10 11 12 13 14 

Forecast 4.05 4.20 3.97 3.66 3.78 4.02 4.09 
Actual 4.65 3.78 4.18 4.21 4.47 4.75 4.61 

Table 11: Evaluation Metrics for LSTM Model 
MSE MAE MAPE 
3.24 1.48 7.48% 

As shown in Table 9, the model yields a relatively smooth IV forecast trajectory. These predicted 

IV values are then substituted into the Black-Scholes formula to compute option prices (Table 

10). The resulting prediction performance metrics, summarized in Table 11, include an MSE of 

3.24, MAE of 1.48, and MAPE of 7.48%, indicating a solid baseline performance. 

  3.2.2 Extended LSTM Models 

Beyond the benchmark model, this section investigates several extended LSTM architectures that 

incorporate additional explanatory factors. In the LSTM-COMO and LSTM-EQU models, 

commodity and equity-related variables are introduced as direct inputs to the LSTM network, 

aiming to evaluate their potential to enhance volatility forecasting. 

To incorporate lower-frequency macroeconomic information, this study adopts the LSTM-

MIDAS framework. While MIDAS structures have been widely explored in econometric 

volatility modeling, their integration with deep learning models remains rare in the existing 



 

 

 

 

 

  
    

    

    

    

 
   

 

 

 

 

 

  
    

    

    

literature. Following the approach proposed by Kamolthip (2021), this study applies a 

transformation that converts low-frequency sequences into high-frequency vectors using MIDAS 

weighting functions, enabling the LSTM network to effectively capture the influence of macro-

level indicators. 

Two MIDAS-based variants are constructed: LSTM-MIDAS-EPU and LSTM-MIDAS-EPU-

COMO-EQU, with the latter combining macroeconomic, commodity, and equity information. 

Table 12: Evaluation Metrics for Extended LSTM Models 
Model Type MSE MAE MAPE 

LSTM-MIDAS-EPU 3.89 1.89 9.28% 

LSTM-COMO 3.02 1.45 6.52% 

LSTM-EQU 3.59 1.99 9.33% 

LSTM-MIDAS-EPU-COMO- 3.44 1.53 8.12% 
EQU 

As presented in Table 12, the LSTM-COMO model exhibits the best performance across all 

metrics, achieving the lowest MSE (3.02), MAE (1.45), and MAPE (6.52%). This indicates that 

commodity prices provide informative short-term signals, which LSTM models can effectively 

exploit. Although the MIDAS-based models also perform reasonably well, the additional benefit 

over direct high-frequency inputs appears limited in this context. 

3.4 Comparative Performance Analysis 

Table 13: Evaluation Metrics for All Models 
Model Type MSE MAE MAPE 

GARCH 4.58 2.52 11.23% 

GARCH-MIDAS-EPU 3.52 1.87 8.28% 



    

    

 
   

    

    

    

    

 
   

 

 

  

 

 

 

 

 

 

GARCH-COMO 4.25 2.24 10.40% 

GARCH-EQU 5.92 3.25 14.72% 

GARCH-MIDAS-EPU-COMO- 3.98 2.04 9.42% 
EQU 
LSTM 3.24 1.48 7.48% 

LSTM-MIDAS-EPU 3.89 1.89 9.28% 

LSTM-COMO 3.02 1.45 6.52% 

LSTM-EQU 3.59 1.99 9.33% 

LSTM-MIDAS-EPU-COMO- 3.44 1.53 8.12% 
EQU 

To provide a holistic evaluation of forecasting performance, Table 13 presents the Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) across 

all GARCH-based and LSTM-based models. Overall, models that incorporate additional 

explanatory factors tend to outperform their benchmark counterparts, highlighting the 

importance of integrating relevant market information into volatility modeling. 

Among all specifications, the LSTM-COMO model achieves the lowest prediction errors, with 

an MSE of 3.02, MAE of 1.45, and MAPE of 6.52%, suggesting that commodity price 

movements are particularly informative for short-term volatility in the carbon options market. 

The baseline LSTM model also performs strongly, benefiting from its ability to capture nonlinear 

temporal dynamics. 

In the GARCH family, GARCH-MIDAS-EPU demonstrates superior performance, significantly 

reducing errors compared to the benchmark GARCH model. This again underscores the 

relevance of macroeconomic uncertainty—especially policy-related shocks—in shaping 

volatility patterns. On the contrary, models that rely solely on equity market information 

(GARCH-EQU and LSTM-EQU) exhibit relatively poor accuracy across all three metrics. 



 

 

  

  

Interestingly, while combining all factor categories yields moderately strong results (e.g., 

GARCH-MIDAS-EPU-COMO-EQU and LSTM-MIDAS-EPU-COMO-EQU), the marginal 

improvements over single-factor models suggest potential redundancy or noise when aggregating 

disparate information sources. 

In summary, models that carefully integrate targeted exogenous factors—notably commodity 

prices and macroeconomic uncertainty—demonstrate clear advantages in improving the accuracy 

of implied volatility and option price forecasts. These findings emphasize the value of hybrid 

approaches that combine financial domain knowledge with flexible machine learning techniques. 



 

 

      

 

   

   

 

  

   

   

  

 

      

   

    

 

    

  

   

 

    

     

4. Conclusion & Discussion 

This paper presents an in-depth investigation into the forecasting of implied volatility (IV) for 

European Union Allowance (EUA) options by integrating both econometric models and machine 

learning methodologies. Through the construction of benchmark and extended versions of 

GARCH and LSTM models, the study systematically examines how diverse sources of market 

information—including macroeconomic uncertainty, commodity prices, and equity market 

volatility—contribute to the modeling of IV in the carbon financial market. 

The results reveal that incorporating carefully selected exogenous variables significantly enhances 

forecasting performance relative to benchmark specifications. In particular, macroeconomic 

uncertainty, represented by the EPU index, proves highly effective when modeled within the 

GARCH-MIDAS framework. This highlights the carbon market's sensitivity to policy-driven 

signals and regulatory expectations. From the machine learning perspective, commodity-related 

factors emerge as the most informative, with the LSTM-COMO model delivering the most 

accurate predictions across all evaluation metrics. This suggests that non-linear relationships and 

short-term fluctuations in energy-related commodities play a crucial role in shaping carbon option 

volatility. 

Notably, the combination of all factor categories does not always result in superior performance. 

While multifactor models achieve reasonable accuracy, the marginal gain over single-factor 

models is often limited. This may point to overlapping signals or the introduction of noise when 

aggregating heterogeneous variables without further selection or refinement. 

These findings offer several contributions to the field. First, they confirm the utility of implied 

volatility as a predictive target in carbon markets, an area where research remains relatively sparse. 



  

  

     

    

 

      

  

  

 

  

Second, they illustrate how combining economic theory with data-driven modeling—especially 

through the integration of MIDAS structures into both statistical and deep learning models—can 

provide flexible yet interpretable tools for volatility forecasting. Lastly, the study underscores the 

importance of factor relevance over factor quantity: careful curation of input variables, especially 

those capturing macroeconomic and commodity-specific shocks, is more valuable than broad, 

undifferentiated inclusion. 

Looking ahead, future research could refine factor selection using more advanced techniques such 

as attention mechanisms, explore the implications of policy regime shifts, or apply similar 

modeling strategies to other emerging environmental derivatives. As the carbon finance ecosystem 

expands, the ability to forecast volatility with precision will become increasingly vital for traders, 

regulators, and institutional participants alike. 
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	• ICE Coal Price Index: Indicator of traditional fuel usage and carbon intensity. Equity Market Factor: • EURO STOXX Volatility Index (VSTOXX): Captures financial market uncertainty. 
	• ICE Coal Price Index: Indicator of traditional fuel usage and carbon intensity. Equity Market Factor: • EURO STOXX Volatility Index (VSTOXX): Captures financial market uncertainty. 
	• ICE Coal Price Index: Indicator of traditional fuel usage and carbon intensity. Equity Market Factor: • EURO STOXX Volatility Index (VSTOXX): Captures financial market uncertainty. 


	2.2 Main Methodology 
	 2.2.1 Newton-Raphson Method for Implied Volatility Estimation 
	Implied volatility (IV) is a key unobservable parameter in option pricing models such as the Black-Scholes model. To estimate IV from observed market option prices, this study employs the Newton-Raphson iterative algorithm, a widely used numerical method that solves for the root of a nonlinear equation. Given the Black-Scholes formula for a European call option: 𝐶BS(𝑆,𝐾,𝑇,𝑟,σ) = 𝑆 ⋅𝑁(𝑑1)−𝐾𝑒−𝑟𝑇 ⋅𝑁(𝑑2) where: ln(𝑆/𝐾) + (𝑟 + 1 σ2) 𝑇 2𝑑1= , σ√𝑇 𝑑2 = 𝑑1 − σ√𝑇 and N(⋅) denotes the cumulativ
	Here, ϕ(⋅) is the standard normal probability density function. The iteration continues until convergence is achieved within a predefined tolerance. This method is implemented to recover the daily implied volatility (IV) series used throughout the empirical analysis in this study. 

	  2.2.2 GARCH Model 
	To capture the time-varying nature of financial market volatility, this study employs the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, originally introduced by Bollerslev (1986). GARCH models are designed to model the conditional variance of time series data, making them particularly suitable for financial return series, which often exhibit volatility clustering and heteroskedasticity. Let rt denote the return series, typically calculated as the difference or percentage change in
	To capture the time-varying nature of financial market volatility, this study employs the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, originally introduced by Bollerslev (1986). GARCH models are designed to model the conditional variance of time series data, making them particularly suitable for financial return series, which often exhibit volatility clustering and heteroskedasticity. Let rt denote the return series, typically calculated as the difference or percentage change in
	• ω>0 is a constant term, • α≥0 measures the short-run impact of past shocks (ARCH effect), • β≥0 captures the persistence of volatility (GARCH effect). 
	• ω>0 is a constant term, • α≥0 measures the short-run impact of past shocks (ARCH effect), • β≥0 captures the persistence of volatility (GARCH effect). 
	• ω>0 is a constant term, • α≥0 measures the short-run impact of past shocks (ARCH effect), • β≥0 captures the persistence of volatility (GARCH effect). 


	The GARCH model assumes that large shocks to volatility can persist over time, and the 
	condition α+β<1 is required to ensure stationarity of the variance process. 
	In this study, the GARCH(1,1) model serves as the benchmark for volatility modeling due to its simplicity and proven empirical performance in capturing volatility clustering. 

	   2.2.3 GARCH-MIDAS Model 
	To incorporate low-frequency explanatory variables into high-frequency volatility modeling, Engle et al. (2013) proposed the GARCH-MIDAS (Mixed Data Sampling) model. This approach decomposes the conditional variance into two multiplicative components: a short-term component driven by GARCH dynamics, and a long-term component driven by low-frequency macroeconomic or market variables.  The model is specified as follows:  
	To incorporate low-frequency explanatory variables into high-frequency volatility modeling, Engle et al. (2013) proposed the GARCH-MIDAS (Mixed Data Sampling) model. This approach decomposes the conditional variance into two multiplicative components: a short-term component driven by GARCH dynamics, and a long-term component driven by low-frequency macroeconomic or market variables.  The model is specified as follows:  
	2)𝑟𝑡 = μ + ε𝑡, ε𝑡 ∼ 𝒩(0, σ𝑡 σ𝑡2 = τ𝑡 ⋅ 𝑔𝑡 Where: 
	•  𝑟𝑡  captures the long-term volatility component affected by low-frequency data,  •  𝑔𝑡  is the short-term component following a standard GARCH process:  
	•  𝑟𝑡  captures the long-term volatility component affected by low-frequency data,  •  𝑔𝑡  is the short-term component following a standard GARCH process:  
	•  𝑟𝑡  captures the long-term volatility component affected by low-frequency data,  •  𝑔𝑡  is the short-term component following a standard GARCH process:  


	2 𝑔=𝜔+𝛼( ) +𝛽𝑔√The long-term component 𝑟is modeled using a MIDAS polynomial: 
	𝜀
	𝑡−1 
	𝑡
	𝑡−1 
	𝜏𝑡−1 
	𝑡 

	𝐾 ln(𝜏𝑡) = 𝜃+∑𝜃𝑘𝐵(𝑘;𝜑,𝜑)⋅𝑍𝑡−𝑘 𝑘=1 
	0 
	1
	2

	Where:  •  𝑍𝑡−𝑘  represents lagged low-frequency explanatory variables  •  𝐵(𝑘; 𝜑1, 𝜑2)  is a normalized Beta weighting function that ensures recent lags are more  heavily weighted.  
	In this study, the GARCH-MIDAS framework is employed to capture the influence of macroeconomic and other low-frequency variables (Economic Policy Uncertainty) on the daily implied volatility of carbon options 

	   2.2.4 LSTM Model 
	The Long Short-Term Memory (LSTM) model is a specialized recurrent neural network designed to capture long-term dependencies in sequential data. It uses a set of gates—forget, input, and output—to regulate information flow and maintain memory over time, making it well-suited for modeling complex dynamics in financial volatility forecasting. The architecture of an LSTM cell is composed of a series of gating mechanisms that regulate the flow of information through the network: 
	The Long Short-Term Memory (LSTM) model is a specialized recurrent neural network designed to capture long-term dependencies in sequential data. It uses a set of gates—forget, input, and output—to regulate information flow and maintain memory over time, making it well-suited for modeling complex dynamics in financial volatility forecasting. The architecture of an LSTM cell is composed of a series of gating mechanisms that regulate the flow of information through the network: 
	Forget gate: 𝑓=σ(𝑊⋅[ℎ,𝑥]+𝑏) 
	𝑡
	𝑓
	𝑡−1
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	Input gate: 𝑖=σ(𝑊⋅[ℎ,𝑥]+𝑏) 
	𝑡
	𝑖
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	𝑡
	𝑖

	Candidate state: 𝐶=tanh(𝑊⋅[ℎ,𝑥]+𝑏) 
	̃
	𝑡
	𝐶
	𝑡−1
	𝑡
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	Cell state update: 𝐶= 𝑓⊙ 𝐶+ 𝑖⊙ 𝐶
	𝑡 
	𝑡 
	𝑡−1 
	𝑡 
	̃
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	Output gate: 𝑜=σ(𝑊⋅[ℎ,𝑥]+𝑏) 
	𝑡
	𝑜
	𝑡−1
	𝑡
	𝑜

	Hidden state: ℎ= 𝑜⊙ tanh(𝐶) Here, 𝑥represents the input at time t, ℎthe hidden state, and 𝐶the cell state. 𝜎 denotes the sigmoid activation function, and ⊙ represents element-wise multiplication. In this study, the LSTM model is applied to forecast implied volatility (IV) based on sequences of past values and relevant exogenous variables. The model parameters—including the number of units, learning rate, batch size, and dropout rates—are tuned to ensure optimal predictive performance and to prevent ove
	𝑡 
	𝑡 
	𝑡
	𝑡 
	𝑡 
	𝑡 

	    2.2.5 Extended LSTM-MIDAS Model 
	To address the challenge of incorporating mixed-frequency data into deep learning models, this study adopts the extended LSTM-MIDAS framework inspired by Kamolthip (2021). Kamolthip (2021) proposes an elegant solution by transforming low-frequency variables into frequency-aligned high-frequency representations using the MIDAS (Mixed Data Sampling) technique. This process involves applying a weighted lag structure (such as the normalized exponential Almon lag) to compress historical low-frequency values into
	 2.2.6 Dynamic Principal Component Analysis (DPCA) 
	To address the high dimensionality and multicollinearity among input variables within each category (e.g., multiple commodity prices), this study adopts the Dynamic  Principal Component Analysis (DPCA) method to extract the most informative components for  forecasting. Unlike 
	traditional Principal Component Analysis (PCA), which ignores the temporal dependence inherent in time series data, DPCA captures both cross-sectional and dynamic (time-lagged) correlations among variables, making it more suitable for financial and economic time series. DPCA assumes that the multivariate time series Xt = (𝑋1𝑡,𝑋2𝑡,…,𝑋𝑁𝑡)⊤ can be decomposed into a lower-dimensional set of dynamic factors that preserve the structure of lagged covariances. The goal is to estimate the dynamic principal co
	traditional Principal Component Analysis (PCA), which ignores the temporal dependence inherent in time series data, DPCA captures both cross-sectional and dynamic (time-lagged) correlations among variables, making it more suitable for financial and economic time series. DPCA assumes that the multivariate time series Xt = (𝑋1𝑡,𝑋2𝑡,…,𝑋𝑁𝑡)⊤ can be decomposed into a lower-dimensional set of dynamic factors that preserve the structure of lagged covariances. The goal is to estimate the dynamic principal co

	3. Results 
	To evaluate the forecasting performance of various models for implied volatility (IV) in the carbon options market, this section presents the empirical results derived from both traditional econometric methods and machine learning techniques. The models include the benchmark GARCH(1,1), several GARCH-MIDAS extensions that incorporate exogenous information from mixed-frequency macroeconomic and market indicators, as well as LSTM-based models designed to capture nonlinear patterns in the data. Furthermore, an
	3.1 Preliminary Diagnostics for GARCH Modeling 
	3.1.1 Descriptive Statistics 
	Figure
	Figure 1: Summary Statistics Figure 3.1 provides a comprehensive summary of the implied volatility (IV) series. The histogram suggests a moderately right-skewed distribution, which is further confirmed by the skewness value of 0.576 and kurtosis of -0.449, indicating the presence of a long right tail and a relatively flatter peak compared to the normal distribution. The IV values range between 0.213 and 0.445, with a mean of 0.3198 and a median of 0.3079. This slight discrepancy between the mean and median 
	3.1.2 Stationarity and White Noise Check 
	Table 1: Augmented Dickey-Fuller Test Results for IV and differenced IV 
	Series 
	Series 
	Series 
	ADF Statistic 
	P-value 
	Stationarity 

	IV 
	IV 
	-1.79401 
	0.383 
	No 

	Diff(IV) 
	Diff(IV) 
	-17.2705 
	0.000 
	Yes 


	As shown in Table 1, the original implied volatility series fails the ADF test at the 5% significance level (p = 0.383 > 0.05), indicating non-stationarity. To address this, we take the 
	As shown in Table 1, the original implied volatility series fails the ADF test at the 5% significance level (p = 0.383 > 0.05), indicating non-stationarity. To address this, we take the 
	first difference of the IV series. The differenced series passes the ADF test (p = 0.000 < 0.05), confirming stationarity. 

	Figure
	Figure 2:  Time Series Plot, ACF and PACF for Diff IV Figure 2 illustrates the differenced IV series along with its ACF and PACF plots. The time series plot of Diff(IV) fluctuates around a constant mean, showing no obvious trend or seasonality. Additionally, the ACF and PACF suggest that autocorrelation is weak and most values lie within the 95% confidence bands, which is consistent with a white noise process. Table 2: Ljung-Box Statistics 
	Lag 
	Lag 
	Lag 
	Chi-Square 
	Degree of Freedom 
	P-value 

	12 
	12 
	8.55 
	10 
	0.575 

	24 
	24 
	22.33 
	22 
	0.441 

	36 
	36 
	34.91 
	34 
	0.425 

	48 
	48 
	42.20 
	46 
	0.632 


	To further evaluate whether the differenced IV series exhibits white noise behavior, we conduct the Modified Box-Pierce (Ljung-Box) Chi-Square test at multiple lags. The results in Table 2 show that all p-values are greater than 0.05, indicating that we fail to reject the null hypothesis. 
	This suggests that the differenced IV series does not exhibit significant autocorrelation and is approximately white noise. 
	3.1.3 Conditional Heteroskedasticity and ARCH Effect Test 
	Figure
	Figure 3: Time Series Plot of Residuals’ Square Table 3: ARCH-LM Test Results 
	Lag 
	Lag 
	Lag 
	LM Statistics 
	P-value 

	1 
	1 
	52.31 
	0.000 

	2 
	2 
	58.19 
	0.000 

	3 
	3 
	60.24 
	0.000 

	5 
	5 
	70.15 
	0.000 

	10 
	10 
	98.21 
	0.000 


	To examine the presence of heteroskedasticity in the differenced implied volatility (IV) series, a time series plot of the squared residuals is presented in Figure 3. The plot displays visible clustering of volatility over time, suggesting potential conditional heteroskedasticity. To formally test for the presence of ARCH effects, the Lagrange Multiplier (LM) test was performed across various lag orders. From Table 3, the LM statistics are statistically significant at all selected lags, with corresponding p
	To examine the presence of heteroskedasticity in the differenced implied volatility (IV) series, a time series plot of the squared residuals is presented in Figure 3. The plot displays visible clustering of volatility over time, suggesting potential conditional heteroskedasticity. To formally test for the presence of ARCH effects, the Lagrange Multiplier (LM) test was performed across various lag orders. From Table 3, the LM statistics are statistically significant at all selected lags, with corresponding p
	confirm that the error variance in the differenced IV series is time-dependent, thereby validating the use of GARCH-type models in subsequent volatility modeling and forecasting. 

	  3.1.4 GARCH(1,1) Model Estimation 
	Following confirmation of significant ARCH effects, a GARCH(1,1) model was fitted to the differenced implied volatility (DiffIV) series. Table 4: GARCH(1,1) model results 
	Coefficient 
	Coefficient 
	Coefficient 
	Estimate 
	Std. Error 
	t value 
	Pr(>|t|) 
	Significance 

	0 
	0 
	5.524e-05 
	3.621e-05 
	1.525 
	0.127 

	1 
	1 
	8.019e-02 
	1.440e-02 
	5.568 
	2.57e-08 
	*** 

	1 
	1 
	9.155e-01 
	1.518e-02 
	60.293 
	< 2e-16 
	*** 


	The GARCH(1,1) model estimated for the differenced implied volatility series is expressed as follows: 2 22σ𝑡 = 5.524 × 10−5 + 0.08019 ε𝑡−1 + 0.9155 σ𝑡−1 
	where α0=5.524×10−5 > 0, α1, β1 > 0, and α1+ β1 = 0.08019 + 0.9155 = 0.99569 < 1, indicating that the volatility process is stationary. According to the estimated GARCH(1,1) model, the volatility for the next 14 trading days is forecasted and will be used to reconstruct future implied volatility values. These results serve as a benchmark for evaluating alternative models introduced in the following sections. 
	3.2 Forecast results with GARCH models 
	To capture the volatility dynamics of carbon option markets, this section applies a series of GARCH-based models to forecast implied volatility (IV). Starting from a benchmark GARCH(1,1) framework, we extend the modeling approach by incorporating various external variables to assess their contribution to forecasting performance. Depending on the frequency of the incorporated factors, we distinguish between standard GARCH-X models (for high-frequency variables) and the GARCH-MIDAS framework (for low-frequenc
	To capture the volatility dynamics of carbon option markets, this section applies a series of GARCH-based models to forecast implied volatility (IV). Starting from a benchmark GARCH(1,1) framework, we extend the modeling approach by incorporating various external variables to assess their contribution to forecasting performance. Depending on the frequency of the incorporated factors, we distinguish between standard GARCH-X models (for high-frequency variables) and the GARCH-MIDAS framework (for low-frequenc
	indicators). The MIDAS (Mixed Data Sampling) structure enables the integration of lower-frequency information—such as monthly policy indices—into daily volatility modeling. Specifically, the models implemented include: 

	• A benchmark GARCH(1,1) model without external regressors; • GARCH models that incorporate single exogenous information such as macroeconomic uncertainty; • A multifactor GARCH-MIDAS model that integrates multiple factors derived from 
	• A benchmark GARCH(1,1) model without external regressors; • GARCH models that incorporate single exogenous information such as macroeconomic uncertainty; • A multifactor GARCH-MIDAS model that integrates multiple factors derived from 
	• A benchmark GARCH(1,1) model without external regressors; • GARCH models that incorporate single exogenous information such as macroeconomic uncertainty; • A multifactor GARCH-MIDAS model that integrates multiple factors derived from 


	macroeconomic, commodity, and equity indicators. Each model’s forecasted IV series is then input into the Black-Scholes pricing formula to generate predicted option prices, allowing for a comparative assessment of model accuracy under different informational structures. 
	 3.2.1 Benchmark GARCH Model 
	Table 5: IV Forecast with GARCH 
	Day1 
	Day1 
	Day1 
	Day2 
	Day3 
	Day4 
	Day5 
	Day6 
	Day7 

	0.2432 
	0.2432 
	0.2522 
	0.2482 
	0.2453 
	0.2489 
	0.2492 
	0.2392 

	Day8 
	Day8 
	Day9 
	Day10 
	Day11 
	Day12 
	Day13 
	Day14 

	0.2424 
	0.2424 
	0.2412 
	0.2403 
	0.2395 
	0.2358 
	0.2385 
	0.2389 


	The benchmark model employs a standard GARCH(1,1) specification without external regressors to forecast implied volatility. As shown in Table 5, the model produces 14-day ahead IV forecasts based solely on historical volatility patterns. These predicted IV values are then used as inputs in the Black-Scholes pricing formula to reconstruct option prices over the forecast horizon. Table 6: Forecasted Price with B-S model (GARCH) 
	The benchmark model employs a standard GARCH(1,1) specification without external regressors to forecast implied volatility. As shown in Table 5, the model produces 14-day ahead IV forecasts based solely on historical volatility patterns. These predicted IV values are then used as inputs in the Black-Scholes pricing formula to reconstruct option prices over the forecast horizon. Table 6: Forecasted Price with B-S model (GARCH) 
	Table 7: Evaluation Metrics for GARCH Model 

	Date 
	Date 
	Date 
	1 
	2 
	3 
	4 
	5 
	6 
	7 

	Forecast 
	Forecast 
	2.95 
	3.25 
	3.08 
	2.73 
	2.98 
	2.93 
	3.23 

	Actual 
	Actual 
	3.88 
	3.58 
	2.70 
	3.78 
	3.50 
	3.82 
	3.21 

	Date 
	Date 
	8 
	9 
	10 
	11 
	12 
	13 
	14 


	Forecast 
	Forecast 
	Forecast 
	3.18 
	4.02 
	3.67 
	3.88 
	3.87 
	4.02 
	4.09 

	Actual 
	Actual 
	4.65 
	3.78 
	4.18 
	4.21 
	4.47 
	4.75 
	4.61 


	MSE MAE MAPE 
	4.58 2.52 11.23% 
	Table 6 presents a comparison between the predicted and actual option prices during the same 14-day forecast window. While the model successfully captures the overall direction of price movement, deviations from actual values are observed. Evaluation metrics shown at Table 7 indicate a mean squared error (MSE) of 4.58, a mean absolute error (MAE) of 2.52, and a mean absolute percentage error (MAPE) of 11.23%, reflecting a reasonable level of forecasting accuracy for a baseline model. 
	   3.2.2 GARCH-MIDAS and GARCH-X Models 
	To enhance the predictive power of volatility modeling, this section explores a suite of extended GARCH frameworks that incorporate macroeconomic, commodity, and equity-based explanatory variables. In particular, we distinguish between two modeling approaches based on the frequency characteristics of the external variables: GARCH-MIDAS and GARCH-X. The macroeconomic component is represented by the Economic Policy Uncertainty (EPU) index, a low-frequency monthly variable. To properly integrate this mixed-fre
	Component Analysis (DPCA) is used to extract the leading factor. The equity market is represented by the EURO STOXX Volatility Index (VSTOXX). Given their high frequency, both commodity and equity variables are incorporated using the GARCH-X model, which allows daily exogenous regressors to influence conditional variance dynamics directly. The models implemented include: 
	• GARCH-MIDAS with EPU only, • GARCH-X with commodity factors (COMO), • GARCH-X with equity volatility (EQU), • A combined model incorporating all three factors using GARCH-MIDAS-X (EPU
	• GARCH-MIDAS with EPU only, • GARCH-X with commodity factors (COMO), • GARCH-X with equity volatility (EQU), • A combined model incorporating all three factors using GARCH-MIDAS-X (EPU
	• GARCH-MIDAS with EPU only, • GARCH-X with commodity factors (COMO), • GARCH-X with equity volatility (EQU), • A combined model incorporating all three factors using GARCH-MIDAS-X (EPU

	COMO-EQU), where EPU is treated through MIDAS and the others through standard exogenous terms. 
	COMO-EQU), where EPU is treated through MIDAS and the others through standard exogenous terms. 
	-
	-



	Table 8: Evaluation Metrics for Extended GARCH Models 
	Model Type 
	Model Type 
	Model Type 
	MSE 
	MAE 
	MAPE 

	GARCH-MIDAS-EPU 
	GARCH-MIDAS-EPU 
	3.52 
	1.87 
	8.28% 

	GARCH-COMO 
	GARCH-COMO 
	4.25 
	2.24 
	10.40% 

	GARCH-EQU 
	GARCH-EQU 
	5.92 
	3.25 
	14.72% 

	GARCH-MIDAS-EPU-COMO
	GARCH-MIDAS-EPU-COMO
	-

	3.98 
	2.04 
	9.42% 

	EQU 
	EQU 


	As shown in Table 8, the inclusion of EPU significantly improves the model’s accuracy across all evaluation metrics, achieving the lowest MSE (3.52), MAE (1.87), and MAPE (8.28%). In contrast, the EQU-based model performs the worst, suggesting that equity market volatility alone may not be a reliable predictor of implied volatility in the carbon market. The model based on commodity prices performs moderately well, and the all-factor GARCH-MIDAS variant achieves a balanced improvement across metrics. 
	These results highlight the pronounced influence of macroeconomic uncertainty on carbon option volatility, likely due to the carbon market's sensitivity to policy shifts and regulatory announcements. This finding is consistent with previous studies (Li et al., 2022; Yan et al., 2021; Adediran et al., 2023), which underscore the role of macro-level shocks in shaping price dynamics in emission trading systems. In summary, the empirical results demonstrate that incorporating appropriate exogenous information—e
	3.3 Forecast results with LSTM models 
	To establish a benchmark for machine learning-based volatility forecasting, a univariate Long Short-Term Memory (LSTM) neural network model is implemented using only the historical values of implied volatility (IV) as input. The model is designed to capture the temporal dependencies within the IV series and generate forward-looking volatility estimates. 
	3.3.1 Benchmark LSTM Model 
	The benchmark LSTM model is constructed with one hidden LSTM layer comprising 50 units, followed by a dense output layer with a single neuron. The model is trained over 50 epochs with a batch size of 16, using the Adam optimizer and mean squared error (MSE) as the loss function. Input data is scaled using MinMax normalization to enhance learning efficiency. 
	Table 9: IV Forecast with LSTM 
	Day1 
	Day1 
	Day1 
	Day2 
	Day3 
	Day4 
	Day5 
	Day6 
	Day7 

	0.2498 
	0.2498 
	0.2525 
	0.2502 
	0.2476 
	0.2467 
	0.2470 
	0.2501 

	Day8 
	Day8 
	Day9 
	Day10 
	Day11 
	Day12 
	Day13 
	Day14 

	0.2502 
	0.2502 
	0.2513 
	0.2500 
	0.2487 
	0.2490 
	0.2497 
	0.2499 


	Table
	Table 10: Forecasted Price with B-S model (LSTM)  
	Table 10: Forecasted Price with B-S model (LSTM)  
	Date 
	1 
	2 
	3 
	4 
	5 
	6 
	7 

	Forecast 
	Forecast 
	3.46 
	4.02 
	3.56 
	3.34 
	3.28 
	3.45 
	3.87 

	Actual 
	Actual 
	3.88 
	3.58 
	2.70 
	3.78 
	3.50 
	3.82 
	3.21 

	Date 
	Date 
	8 
	9 
	10 
	11 
	12 
	13 
	14 

	Forecast 
	Forecast 
	4.05 
	4.20 
	3.97 
	3.66 
	3.78 
	4.02 
	4.09 

	Actual 
	Actual 
	4.65 
	3.78 
	4.18 
	4.21 
	4.47 
	4.75 
	4.61 


	Table 11: Evaluation Metrics for LSTM Model 
	MSE MAE MAPE 
	3.24 1.48 7.48% 
	As shown in Table 9, the model yields a relatively smooth IV forecast trajectory. These predicted IV values are then substituted into the Black-Scholes formula to compute option prices (Table 10). The resulting prediction performance metrics, summarized in Table 11, include an MSE of 3.24, MAE of 1.48, and MAPE of 7.48%, indicating a solid baseline performance. 
	  3.2.2 Extended LSTM Models 
	  3.2.2 Extended LSTM Models 
	Beyond the benchmark model, this section investigates several extended LSTM architectures that incorporate additional explanatory factors. In the LSTM-COMO and LSTM-EQU models, commodity and equity-related variables are introduced as direct inputs to the LSTM network, aiming to evaluate their potential to enhance volatility forecasting. To incorporate lower-frequency macroeconomic information, this study adopts the LSTM-MIDAS framework. While MIDAS structures have been widely explored in econometric volatil
	literature. Following the approach proposed by Kamolthip (2021), this study applies a transformation that converts low-frequency sequences into high-frequency vectors using MIDAS weighting functions, enabling the LSTM network to effectively capture the influence of macro-level indicators. Two MIDAS-based variants are constructed: LSTM-MIDAS-EPU and LSTM-MIDAS-EPU-COMO-EQU, with the latter combining macroeconomic, commodity, and equity information. 

	Table 12: Evaluation Metrics for Extended LSTM Models 
	Table 12: Evaluation Metrics for Extended LSTM Models 
	Table 12: Evaluation Metrics for Extended LSTM Models 

	Model Type 
	Model Type 
	MSE 
	MAE 
	MAPE 

	LSTM-MIDAS-EPU 
	LSTM-MIDAS-EPU 
	3.89 
	1.89 
	9.28% 

	LSTM-COMO 
	LSTM-COMO 
	3.02 
	1.45 
	6.52% 

	LSTM-EQU 
	LSTM-EQU 
	3.59 
	1.99 
	9.33% 

	LSTM-MIDAS-EPU-COMO
	LSTM-MIDAS-EPU-COMO
	-

	3.44 
	1.53 
	8.12% 

	EQU 
	EQU 


	As presented in Table 12, the LSTM-COMO model exhibits the best performance across all metrics, achieving the lowest MSE (3.02), MAE (1.45), and MAPE (6.52%). This indicates that commodity prices provide informative short-term signals, which LSTM models can effectively exploit. Although the MIDAS-based models also perform reasonably well, the additional benefit over direct high-frequency inputs appears limited in this context. 
	3.4 Comparative Performance Analysis 
	Table 13: Evaluation Metrics for All Models 
	Table 13: Evaluation Metrics for All Models 
	Table 13: Evaluation Metrics for All Models 

	Model Type 
	Model Type 
	MSE 
	MAE 
	MAPE 

	GARCH 
	GARCH 
	4.58 
	2.52 
	11.23% 

	GARCH-MIDAS-EPU 
	GARCH-MIDAS-EPU 
	3.52 
	1.87 
	8.28% 


	GARCH-COMO 
	GARCH-COMO 
	GARCH-COMO 
	4.25 
	2.24 
	10.40% 

	GARCH-EQU 
	GARCH-EQU 
	5.92 
	3.25 
	14.72% 

	GARCH-MIDAS-EPU-COMO
	GARCH-MIDAS-EPU-COMO
	-

	3.98 
	2.04 
	9.42% 

	EQU 
	EQU 

	LSTM 
	LSTM 
	3.24 
	1.48 
	7.48% 

	LSTM-MIDAS-EPU 
	LSTM-MIDAS-EPU 
	3.89 
	1.89 
	9.28% 

	LSTM-COMO 
	LSTM-COMO 
	3.02 
	1.45 
	6.52% 

	LSTM-EQU 
	LSTM-EQU 
	3.59 
	1.99 
	9.33% 

	LSTM-MIDAS-EPU-COMO
	LSTM-MIDAS-EPU-COMO
	-

	3.44 
	1.53 
	8.12% 

	EQU 
	EQU 


	To provide a holistic evaluation of forecasting performance, Table 13 presents the Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) across all GARCH-based and LSTM-based models. Overall, models that incorporate additional explanatory factors tend to outperform their benchmark counterparts, highlighting the importance of integrating relevant market information into volatility modeling. Among all specifications, the LSTM-COMO model achieves the lowest prediction e
	Interestingly, while combining all factor categories yields moderately strong results (e.g., GARCH-MIDAS-EPU-COMO-EQU and LSTM-MIDAS-EPU-COMO-EQU), the marginal improvements over single-factor models suggest potential redundancy or noise when aggregating disparate information sources. In summary, models that carefully integrate targeted exogenous factors—notably commodity prices and macroeconomic uncertainty—demonstrate clear advantages in improving the accuracy of implied volatility and option price foreca
	4. Conclusion & Discussion 
	This paper presents an in-depth investigation into the forecasting of implied volatility (IV) for European Union Allowance (EUA) options by integrating both econometric models and machine learning methodologies. Through the construction of benchmark and extended versions of GARCH and LSTM models, the study systematically examines how diverse sources of market information—including macroeconomic uncertainty, commodity prices, and equity market volatility—contribute to the modeling of IV in the carbon financi
	The results reveal that incorporating carefully selected exogenous variables significantly enhances forecasting performance relative to benchmark specifications. In particular, macroeconomic uncertainty, represented by the EPU index, proves highly effective when modeled within the GARCH-MIDAS framework. This highlights the carbon market's sensitivity to policy-driven signals and regulatory expectations. From the machine learning perspective, commodity-related factors emerge as the most informative, with the
	Notably, the combination of all factor categories does not always result in superior performance. While multifactor models achieve reasonable accuracy, the marginal gain over single-factor models is often limited. This may point to overlapping signals or the introduction of noise when aggregating heterogeneous variables without further selection or refinement. 
	These findings offer several contributions to the field. First, they confirm the utility of implied volatility as a predictive target in carbon markets, an area where research remains relatively sparse. 
	Second, they illustrate how combining economic theory with data-driven modeling—especially through the integration of MIDAS structures into both statistical and deep learning models—can provide flexible yet interpretable tools for volatility forecasting. Lastly, the study underscores the importance of factor relevance over factor quantity: careful curation of input variables, especially those capturing macroeconomic and commodity-specific shocks, is more valuable than broad, undifferentiated inclusion. 
	Looking ahead, future research could refine factor selection using more advanced techniques such as attention mechanisms, explore the implications of policy regime shifts, or apply similar modeling strategies to other emerging environmental derivatives. As the carbon finance ecosystem expands, the ability to forecast volatility with precision will become increasingly vital for traders, regulators, and institutional participants alike. 
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