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Abstract

Studies on how to determine rental price have become increasingly important
with the development of modern cities. The accessibility to public transportation
sites, such as metro stations, is a fundamental factor that influences rental price
of housing units. In the past few decades, the e�ect of nearby metro stations
on rental price was usually estimated via accessibility measures. On the basis
of research by Taisuke Sadayuki,1 this paper modifies the theoretical model that
relates metro stations proximity to rental prices and then tests this model using data
from Shanghai. My model introduces metro passenger tra�c data as an improved
measure of the quantitative characteristics of the station. Estimation results reveals
the spatial e�ect of the metro system on housing rents, which decreases with the
distance and increases with the quantitative score, and proves the feasibility of
applying our proposed model to Shanghai. The modification to the model shows
expected improvement by making parameter estimations maintain stable as adding
more stations into the model.

1 Introduction

Determining what factors influence rental prices has always been a considerable problem

for real estate studies and urban economics. In the house rental market, housing unit’s

geographical relationship with nearby public transportation sites, such as metro stations,

is a fundamental factor in determining rent. Previous studies generally attempted to

build a model for estimating the spatial e�ects of multiple sites meeting the following

assumptions. (A1) The shorter the distance to nearby transportation sites, the higher

influence from the site on the housing unit. (A2) The characteristics of each site may

1. Taisuke Sadayuki, “Measuring the spatial e�ect of multiple sites: An application to housing rent
and public transportation in Tokyo, Japan,” Regional Science and Urban Economics 70 (2018): 155–173.
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lead to di�erent impacts on rents. (A3) As the “rankings” near the site increase, the site

has an increasing impact on housing rents.2 The key part of the model is measuring a

housing unit’s accessibility to surrounding transportation sites. While previous studies

established several patterns of “accessibility measures,” this study develops a highly accu-

rate estimation based on a weighted gravity proximity measure and performs a thorough

application study on the influence of metro stations on housing rents in Shanghai.

Several proximity measures were used in previous research. The most straightforward

measure calculates the distance from the closest site to the housing unit.3 An alternative

is to use the number of sites located in a given range around the housing unit.4 Another

approach widely used in early times is a binary-type measure, specifically, whether the

site is included in a given circle centered at the housing unit.5 These three measures have

not only failed to satisfy the general assumptions, each of those measures is restricted

under specific criteria and may generate a biased estimate if any requirements do not hold.

For example, one obvious problem of the first proximity measure is that it automatically

ignores the e�ect from the other sites except the closest one. Two methods were proposed

to address the impact of multiple sites: (1) run a regression on the closest, second closest,

and so on; and (2) use the sum of the distances between sites to the housing unit.6

However, these two remedies brought with them new issues. Adding multiple sites to the

model can result in serious multicollinearity problems, preventing scholars from deriving

useful interpretations of the spatial e�ects. On the contrary, simply using the sum of

distances requires a selection of bu�ers, which is usually determined by the researcher in

any way. Researchers like McMillen and McDonald tried to avoid the spatial heterogeneity

problems by limiting the use of housing samples that are very close to locations rather

than playing with variables of multiple sites.7

2. Sadayuki; 157..
3. Gabriel Ahlfeldt, “If Alonso Was Right: Modeling Accessibility And Explaining The Residential

Land Gradient,” Journal of Regional Science 51, no. 2 (2010): 318–338.
4. Xian F. Bak and Geo�rey J.d. Hewings, “Measuring foreclosure impact mitigation: Evidence from

the Neighborhood Stabilization Program in Chicago,” Regional Science and Urban Economics 63 (2017):
38–56.

5. Ben Hoen et al., “The Impact of Wind Power Projects on Residential Property Values in the United
States: A Multi-Site Hedonic Analysis,” 2009,

6. John Campbell, Stefano Giglio, and Parag Pathak, “Forced Sales and House Prices,” 2009,
7. Daniel P. Mcmillen and John Mcdonald, “Reaction of House Prices to a New Rapid Transit Line:
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Some researchers made modifications to the model and adopted a new proximity mea-

sure that addresses those three assumptions. Those amendments included a redefinition

of the traditional proximity measure to transfer the model into a spatial analysis model,

which allows estimation of the point-to-point e�ect. This amendment uses an “acces-

sibility measure” based on the gravity function that increase with the attractiveness of

the destination and decrease with distance.8 Then, an improved proximity measure was

introduced with an additional parameter addressing the order of proximity. Sadayuki’s

work is the most recent study on the topic of rental price and metro stations using this

kind of accessibility measure. Compared with previous studies focused on zone-to-zone

e�ects, the focus of the proposed model in Sadayuki’s study is more local and attempts

to derive the spatial e�ect of multiple metro stations. The accessibility measure allows

for a more flexible implementation when constructing the functional form compared with

proximity measures developed in early times. Second, the number of parameters remains

unchanged in the measure when the site number shifts. Therefore, this measure can well

solve the multicollinearity problem and render useful implications about the spatial e�ect.

In the past two decades, e�orts to implement the accessibility measure into the hedo-

nic model have increased, particularly in fields like real estate study and transportation.9

Although recent studies have proposed a proximity measure that fulfills the three as-

sumptions and can be applied in general cases, the implementations of previous models

still missed important quantitative characteristics in the case of the metro system. To

our knowledge, most studies that used hedonic analyses to examine the housing market

only considered the e�ect of the closest station, such as Nakagawa10 and Diewert.11 In

Sadayuki (2018), up to nine closest stations were included in the model and the order

of proximity was considered to estimate the determination of housing rent in Tokyo,

Chicagos Midway Line, 1983-1999,” Real Estate Economics 32, no. 3 (2004): 463–486.
8. Sadayuki, “Measuring the spatial e�ect of multiple sites: An application to housing rent and public

transportation in Tokyo, Japan.”
9. John R. Ottensmann and Greg Lindsey, “A Use-Based Measure of Accessibility to Linear Features

to Predict Urban Trail Use,” Journal of Transport and Land Use 1, no. 1 (2008).
10. Masayuki Nakagawa, Makoto Saito, and Hisaki Yamaga, “Earthquake risk and housing rents: Ev-

idence from the Tokyo Metropolitan Area,” Regional Science and Urban Economics 37, no. 1 (2007):
87–99.

11. W. Erwin Diewert and Chihiro Shimizu, “Hedonic regression models for Tokyo condominium sales,”
Regional Science and Urban Economics 60 (2016): 300–315.
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Japan.12 However, the quantitative characteristics chosen to describe a metro station

were still quite arbitrary. Most studies only used the number of lines and ignored the

notion that di�erent stations may have di�erent importance according to their tra�c sit-

uation. By considering the importance of a station in the whole metro system, our model

allows us to have a productive and more practical explanation for the spatial e�ects of

surrounding metro stations with an improved evaluation of sites.

In the following section, we introduce the hedonic model and traditional accessibility

measures to give a brief explanation about the basis of our research. Then, we describe our

proposed modification to the accessibility measure and the functional forms of exponential

and linear types in the methodology section. In the application section, our dataset is

displayed and explained, including the house and transportation data, before we proceed

to the model estimation. Estimation results from our proposed model and accessibility

measure are discussed in the results section, which suggests our application can well

solve the research problem with several metro stations included in the model. It has been

shown that distance, quantitative characteristics, and proximity order all influence the

impact of a station to nearby housing.

Considering that no research has explicitly studied the spatial e�ect of the metro

system on Shanghai’s rental prices, the findings of this empirical study suggest that the

proposed accessibility measure has good explanation power with Shanghai’s data. This

study also indicates that proximity order and quantitative characteristics of stations

are critically influential factors on rents and are thus worthy consideration when new

transportation sites are assessed. The conclusion section discusses our results and o�ers

several potential improvements in the future, such as using the new methodology to

identify the role of di�erent stations in the metro system.

12. Sadayuki, “Measuring the spatial e�ect of multiple sites: An application to housing rent and public
transportation in Tokyo, Japan.”
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2 Hedonic model and the proposed accessibility mea-

sure

2.1 Traditional accessibility measures

In previous studies on transportation sites, point-to-point spatial analysis was realized

by implementing an accessiblity measure developed from conventional ones used to study

zone-to-zone e�ects. To define our question, i refers to the ith housing unit and the jth

closest site around housing i is indicated by j. We supposed that K types in total of

di�erent sites exist in our model with distinct spatial e�ects, and each site si(j) falls into

one of those K categories. Generally, the traditional gravity-based accessibility measure

used in hedonic model is as the follow.

GJ
i =

Jÿ

j=1

A
Kÿ

k=1
Dk(si(j))fk(di(j), qi(j))

B

+ c(j) (1)

The gravity-based function GJ
i , which represents a well-used accessibility measure,

has functional forms of di(j), qi(j), and Dk(si(j)), in which j = {1; 2; ...; J}. di(j) is the

distance between housing unit i to the station with index j, si(j). As for qi(j), it is the

variable standing for the quantitative characteristics of station si(j). Di�erent types of

sites exist, and these types are represented by a dummy variable Dk(si(j)), which takes

a value of 1 if si(j) belongs to type k œ {1; ...; K}. The model can include J closest

sites according to di�erent settings, with c(j) representing the intercept in the measure.

The two most commonly used specifications for fk(.), which is the accessibility measure,

namely, exponential type and linear type.

fk(.) = · kqi(j)e
–kdi(j) (2)

In the exponential-type model defined as function (2), · (k) and –(k) are parameters

associated with q and d, respectively. According to our prediction that as the distance
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increases the spatial e�ect declines, –(k) is expected to have a negative sign. As for

the metro station’s quantitative characteristic, its associating parameter · (k) should be

positive and the characteristic q itself should be non-negative regardless of type-k.

fk(.) = · kqi(j) + –kdi(j) + Êk (3)

In the linear-type model, · (k), –(k), and Ê(k) are three parameters. Using the linear-

type specification has a huge benefit because the estimation results of · (k) and (k), can

be directly interpreted as two marginal e�ects: quantitative characteristics and distance.

Moreover, we can release the assumption that those two e�ects should have a negative

correlation to give our model improved flexibility and allow us to obtain results when the

spatial e�ect is not very significant (i.e. when parameters are small).

2.2 Proposed proximity measures

This study adopts an improved proximity measure developed by previous research,which

adds a proximity order into our model. The basic idea is simple: the first closest station

has a higher impact on the housing rent than the second closest one and so on. We con-

sider a straightforward implementation that multiplies fk(.) by a new parameter gk(j) to

weigh the spatial e�ect di�erently according to the proximity order of a station.

GJ
i =

Jÿ

j=1

A
Kÿ

k=1
Dk(si(j))gk(j)fk(di(j), qi(j))

B

+ c(j) (4)

In this study, we use the specification gk(j) = j◊k as the weighting function. For the

special case where all metro stations have an identical impact, ◊k is 0 and (5) decreases

to the original functional form (1). We can see where the improvement of the proximity

measure is making a di�erence. The discounting impact is considered and a wrong speci-

fication of the impact of the sites with di�erent proximity orders is avoided. However, an

inevitable identification problem occurs with this proximity measure in the computation,

during which the estimation can sometimes fail to converge when ◊k or · k is relatively
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small.

Next, we introduce the explicit models with their functional form and use the models

to test the spatial e�ect of Shanghai’s metro stations in the Application section. Weighted

proximity measure is directly applied and the linear-type measure is likewise implemented.

One major di�erence between the measure in this study and the traditional measures in

previous literature is that we only consider the first J closest sites and study how people

tried these sites di�erently according to their orders. By contrast, many previous studies

simply included all sites within a certain range when computing the accessibility. In this

specific point-to-point e�ect study on housing and public transportation, using a certain

number of sites rather than all surrounding sites to construct our proximity measure is

appropriate and aligns with common sense.

3 Application

3.1. Estimation models

The research question is explored using a hedonic regression analysis of a large sample of

housing rent and metro system data. Hedonic regression is often used in real estate and

property studies to investigate the impact of several factors that a�ect housing value.

The advantage of using this model is that it breaks down the factors into constituent

characteristics, which allow us to estimate the impact of each category of characteristics.

In this study, the model of housing rent is reduced to two constituent parts, housing at-

tributes and public transportation accessibility. Generally, hedonic models are estimated

using regression analysis, and MLE is used for most parts of this project.

The hedonic function of rental price prediction:

Renti = GJ
j

Ó
j, di(j), qi(j), Dk

i(j)
Ô

+ Xi— + ei (5)

Renti is the value of the housing rent with index i. Gj
i is the gravity-based proximity

measure, including the J closest stations around the unit i. Xi is the vector of housing
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attributes, and — is the vector of coe�cients associated with Xi. The proximity measure

is a function of di(j), the distance from the station to the housing unit, and qi(j), the

quantitative parameter of station j. D is a dummy variable indicating the type of station.

Here, the dummy variable D1
(j) = 1 if a station si(j) is the closest one to access a certain

metro line, and D1
(j) = 0 otherwise.

Now, we define the explicit functional forms of the two weighted accessibility measures.

GJ
i =

Jÿ

j=1

Ë
D1

i(j)j
◊1

· 1qi(j)e
–1di(j) + D0

i(j)(j ≠ 1)◊0
· 0qi(j)e

–0di(j)
È

+ c(j) (6)

GJ
i =

Jÿ

j=1
(D1

i(j)j
◊1(· 1qi(j) + –1di(j)) + D0

i(j)(j ≠ 1)◊0(· 0qi(j) + –0di(j))

+ D0
i(j)(j ≠ 1)◊2

Ê0) + c(j)

(7)

Function (7) defines Model A of the exponential type, and the order weighting is

realized by adding a term j◊. ◊0 and ◊1 are expected to be negative if a diminishing spatial

e�ect of metro stations with the proximity order exists. On the contrary, if the spatial

e�ect has no correlation with the proximity order of stations, then ◊0 = ◊1 = 0. Especially,

the term (j ≠ 1) is constructed to represent the e�ect of the second closest station and

so on, while the coe�cient · 1 and –1 indicate the case when D1
(j) = 1 and represent

the e�ects of the closest station. Model B in Function (8) is a linear-type extension of

traditional measures with newly introduced weighting parameters. Here, omega0 stands

for the intercept, which is just the setting of this measure. We are not going to discuss the

explicit interpretation of omega in the following applications. The hedonic functions with

two proximity measures are estimated using the maximum likelihood method (MLE).

One major improvement of our implementation is the choice of quantitative charac-

teristics. Rather than simply using the number of lines at station sj as the quantitative

parameter qi(j), we derive a more accurate quantitative measure by using metro card

swipe data from the Shanghai metro system. By constructing this variable qi(j), our
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model can highly reflect the importance of each station depending on its relative tra�c

volumes along the metro line.

qj =
A

ln(trafficj) ≠ ln(trafficj)
max(ln(trafficj)) ≠ min(ln(trafficj))

+ 1
B

◊ number_of_lines1/2
j (8)

3.2 Data

Table 1: Definition of Variables
Variable Definition
Rent Housing unit rental price per month in RMB

d(j) Euclidian distance in meters to the s(j)

q(j) Quantatitive score at s(j)

D1
(j) Station type dummy, =1 if has a new line

D0
(j) Station type dummy, =1 if no a new line

Area Floor space in square meters

Bedrooms Number of bedrooms

Kitchens Number of kitchens

Restrooms Number of restrooms

Level Floor level

Age Age of the housing

N Housing direction, =1 if the direction is north

S Housing direction, =1 if the direction is south

E Housing direction, =1 if the direction is east

W Housing direction, =1 if the direction is west

Two major sources of data are used. Housing rental data in Shanghai City are from

Lianjia, a housing rental and real estate platform.13 Specifically, we apply a web crawler

in October 2018 to obtain the data from the Lianjia Shanghai website, thus ensuring its

timeliness and reliability. A total of 11,649 sample housing units from 4,559 communities

13. Lianjian Wang, https://sh.lianjia.com/.
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(residential quarter) are obtained after the preliminary data processing, such as dropping

the missing values and removing the top and bottom one-percentiles. The housing rental

data include monthly rents and housing attributes, such as name of the community, age

of the unit, floor level, number of living rooms and bedrooms, number of total stories of

the building, and direction of windows. Table 1 gives detailed definitions of the variables

we need, while Table 2 shows several basic statistics of those variables. The average

monthly rent in the sample is approximately 7,747 RMB after the top and bottom values

are removed. The average size of the housing unit is 92 square meters, and the average

age in year of all housing units is 17.97.

Figure 1: Metro lines and stations in Shanghai

The metro data are accessed from the database of the Shanghai Metro Data Team.

The metro line data is in ArcGIS format and we convert it into our desired dataset by

using the “geopanda” package o�ered in Python. Our metro line data consist of 16 lines.

Figure 1 shows the lines and stations in Shanghai City. This dataset includes the name of

every station, the line number available at that station, and the geometrical coordinates

(longitude and latitude). As of 2018, Shanghai’s metro system had 323 stations, of which
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243 stations only have one line, 62 with two, 16 with three, and 2 with four. From

this processed dataset, we compute the Euclidian distance from a housing unit to its

surrounding metro stations using a haversine method. The first n = 5 closest stations

are then identified by comparing the distances, and we will test the conditions from when

n = 1 to when n = 5.

Table 2: Basic statistics
Variable Mean S.D. Min Max
Rent 7747 5032 2230 25900

Variables

Age 17.97 9.56 3 108

Size 92.98 53.64 6 619

Distance d(j)

d(1) 1220 1656 29 29470

d(2) 1754 1689 203 30208

d(3) 2252 1822 388 30706

d(4) 2746 2104 656 31403

d(5) 3150 2333 865 31246

Quantitative Score Q(j)

Q(1) 1.32 0.65

Q(2) 1.29 0.61

Q(1) 1.32 0.64

Q(1) 1.30 0.61

Q(1) 1.32 0.61

Table 2 shows the metro data, including basic statistics on housing attributes and

variables derived from metro station data. The average value of the closest distance

variable d1 is 1,220 meters, and the respective average values of the second and third

closest stations are 1,754 and 2,252 meters. Approximately 20% of the second closest

stations have a “new line”, which means they are the closest station lead to a new line

other than that in station 1, and such a proportion remains similar as we go to the
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third and fourth closest stations. This feature is considerably di�erent from the research

conducted in Tokyo, and one possible explanation is the di�erence in the metro system

density in two cities.

4 Results

Model A is the first model to be estimated, and it contains the traditional measures and

weighting parameters that address the proximity ranking order. Table 5 shows the results

of parameters estimated using the MLE. Control variables in the housing attribute vector

X are currently skiped here.

Table 3: Parameter estimates of Model A1
Models with stations from 1 to 5

(J=1) (J=2) (J=3) (J=4) (J=5)
· 1 2.20úúú 2.21úúú 2.12úúú 2.04úúú 1.95úúú

(0.072) (0.068) (0.064) (0.060) (0.057)

–1 -0.94úúú -0.85úúú -0.70úúú -0.58úúú -0.50úúú

(0.053) (0.045) (0.036) (0.030) (0.024)

· 0 -1.01 -1.31 -2.75 -2.96

–0 -4.71 -7.02úúú -3.82ú -1.23
(0.667) (2.282)

◊1 -1.18úúú -1.82úúú -1.30úúú -1.11úúú

(0.094) (0.059) (0.054) (0.036)

◊0 -1.54 -0.64 -0.47

Log-Likelihood -27,459 -27,309 -27,221 -27,117 -27,003
AIC 54,935 54,643 54,466 54,259 54,031

The dependent variable here is set to be the monthly rent in 1000 RMB.
ú p < 0.1, úú p < 0.05, úúú p < 0.01

Starting with the results from Model A, the first step is to examine the accessibility

measure parameters · 1 and –1. Both parameters show the expected signs and are statis-

tically significant, which aligns with our prediction that the rents of neighboring housing

12



can be positively influenced by a station leading to a new metro line. In addition, finding

that a housing unit is expensive if it is close to a station or that the station has a high

quantitative score is natural. Parameters · 0 and –0 show a low statistical significance,

implying that when evaluating housing rent, a station has almost no influence if there

exists a closer station leading to a particular line.

Estimation results shown in Table 5 correspond with traditional measures. Although

the assumption of the traditional accessibility measure is that all close stations have equal

importance to a residential housing unit regardless of the proximity order, this model can

reveal the e�ect di�erence with orders when n is two or larger. According to the result,

◊1 has a negative sign and is statistically significant, implying that the model containing

proximity order performs well using data from Shanghai. As we can observe, ◊1 remains

negative in n = 3 to n = 5, which meets our previous prediction. In Model A, the log

likelihood and AIC have the same trend of improvement when we include more stations

into the model and maintain a good level, same as in previous studies. However, the

estimation is noticeably not as stable as the result from Tokyo, especially when more

than three stations are added. This result may be attributed to the built-in structural

di�erence between the metro systems of two cities and their diverse logic behind the real

estate market.
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Figure 2 (Model A)
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Figure 2 is a straightforward display of the spatial e�ect of a metro station on housing
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rents and how the e�ect shifts according to the distance of a housing unit to the station.

For the sake of computational convenience, the quantitative characteristics q at the sta-

tion is set to 1. Although we draw all station orders in one graph, the levels of their e�ect

cannot be directly compared across orders because the term c is not identifiable in this

hedonic function implementation. As displayed in Figure 2, a drop of 1021 yuan in the

monthly rent can be expected when the d1 increases from 400 meters to 1,600 meters.

When the distance to the second closest "new-line" station (i.e. d2) changes by 1200

meters, the rent falls by approximately 283 yuan. The change of stations without a new

line is ambiguous, which agrees with common sense that people do not care about addi-

tional stations if an existing station already leads to the same line. The functional form

of Model A already restricts two major parameters d and q to be negatively correlated.

This assumption should hold to ensure a reasonable interpretation of the result.

Estimation results for Model B are described in Table 4. Our desired parameters –

and · all show the expected signs with high significance, same as the case in Model A. For

the case with the closest station, · 1’s value 0.72 means the housing rent will increase by

720 RMB when the quantitative score of the station goes up by 1. As for the parameter

–1, the value of -0.65 means the rent will decreases by 650 yuan as the distance between

the housing unit and the first closest station increases by 1000 meters. The negative

value of ◊1 proves our assumption that distance and quantitative characteristics have

diminishing marginal e�ects. One simplified interpretation is that the spatial e�ect of

the first closest station is roughly as six times as that of the second closest station. As for

stations leading to no new metro line, –0 and · 0 are relatively unstable and insignificant

in several cases. Therefore, we may continue the assumption that residents only care

about the closest station leading to a particular metro line they desire. Finally, ◊0 is not

statistically significant, and so we just skip Ê for now.

14



Table 4: Parameter estimates of Model B1
Models with stations from 1 to 5

(J=1) (J=2) (J=3) (J=4) (J=5)
· 1 0.72úúú 0.72úúú 0.81úúú 0.89úúú 0.72úúú

(0.048) (0.048) (0.048) (0.048) (0.048)

–1 -0.65úúú -0.65úúú -0.66úúú -0.63úúú -0.65úúú

(0.019) (0.019) (0.019) (0.019) (0.019)

· 0 -1.54 -0.89 -0.65 -0.68

–0 -1.91 -1.09úúú -1.08úú -1.23
(0.234) (.342)

Ê0 -4.83 úúú -3.21úúú -1.90úúú -1.51úúú

(0.005) (0.192) (0.206)

◊1 -1.02úúú -0.73úúú -1.36úúú -1.25úúú

(0.106) (0.062) (0.149) (0.089)

◊0 -1.73úúú -2.09 -1.93
(0.003)

◊2 -4.91 úúú -0.58 úúú -1.05
(0.101) (0.106)

Log-Likelihood -27,335 -27,335 -27,235 -27,115 -27,335
AIC 54,687 54,699 54,498 54,258 54,698

The dependent variable here is set to be the monthly rent in 1000 RMB.
ú p < 0.1, úú p < 0.05, úúú p < 0.01
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Figure 3 (Model B)
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Figure 3 displays of the spatial e�ect of a metro station estimated using model B.

For the sake of computational convenience, the quantitative score q is also set to 1. The

levels of their e�ect cannot be directly compared across orders because the term c is not

identifiable in this hedonic function implementation.In Figure 3, a drop of 780 yuan in

the monthly rent can be expected as the distance to the closest station increases from

400 meters to 1,600 meters. When it turns to the second closest station, the decreasing

value in rent is approximately 220 yuan. Same as the result in model A, the change of

stations without a new line is ambiguous.

5 Conclusion

This study’s objective is to estimate the spatial e�ect of Shanghai’s metro system using

the improved accessibility measure developed from previous studies. Results indicate

that the weighted proximity measure keeps its explanation power when implemented in

the context of Shanghai and shows a diminishing spatial e�ect according to the proximity

order. With regard to the updated quantitative characteristics, constructing an adjusted

indicator variable achieves the initial goal of including the passenger tra�c volume while

avoiding the endogeneity problem. This new indicator variable evaluates the tra�c and

the importance of a station among all stations in the metro system.

Although this study has met most of its objectives, some of its estimation results

are less stable than those in previous studies that used hedonic models. Two possible

explanations exist for this result. One is that the model is not entirely specified when

it is implemented with data from Shanghai. Another is the built-in complexity within

Shanghai’s real estate market that limits the accuracy of the spatial e�ect estimation of

any kind. For example, like many cities in China, Shanghai’s real estate market is highly

dependent on policies that can lead to misspecification with the hedonic model, such as

the purchasing quota or the school quota that goes with a house. Another challenge

comes from the functional form of the hedonic model, which makes MLE estimation very

di�cult to get because it is not convex in some cases. We expect to improve the MLE
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estimate in future studies.

The results also have practical interpretations and significance besides the improve-

ment in proximity measures. First, our findings suggest that the proximity order is vital

in assessing a new housing or transportation project because residents usually care more

about distance than which line they are close to. The detailed estimation of parameters

in the two models o�ers a clear reference when studying how metro stations explicitly

influence housing rents in the neighborhood. Academic researchers, real estate develop-

ers, and public transportation planners can obtain insight from this result to assist their

future projects. Particularly, interested researchers can implement this model by using

historical data or simply waiting for one more year until a new metro line is built to check

the fixed e�ects of this model and address currently unobserved variables. Considering

there are very limited studies using the hedonic model to study Shanghai’s real estate

and transportation, this paper o�ers a novel approach for local researches. Besides the

application on the metro system, the use of accessibility measure we used in the paper can

be extended to study di�erent kinds spatial e�ects, such as the e�ect of hospitals, malls,

and numerous other public amenities, as long as the constructed proximity measure has

appropriate quantitative and qualitative characteristics.

Furthermore, this research topic can be elaborated in the future by working on the

measures of distance and quantitative characteristics. Some researchers, such as Derrible

and Mishra, already use network indices to develop another specification in transportation

studies.14 Other future works can come up with improved identification of di�erent

stations by using advanced techniques, such as neural networks.15 A research group from

China has published a study that identifies hub stations of bus networks in Xiamen.16

A more complicated algorithm will also help improve the estimation of the weighting

parameter because, currently, our model only considers the factor of new lines but ignores

the metro transferring concern. Research techniques from numerous disciplines can be

14. Sybil Derrible, “Network Centrality of Metro Systems,” PLoS ONE 7, no. 7 (2012).
15. Felipe Jimenez et al., “Bus line classification using neural networks,” Transportation Research Part

D: Transport and Environment 30 (2014): 32–37.
16. Hui Zhang, Chengxiang Zhuge, and Xiaohua Yu, “Identifying hub stations and important lines of

bus networks: A case study in Xiamen, China,” Physica A: Statistical Mechanics and its Applications

502 (2018): 394–402.
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applied to solve this spatial e�ect problem, and we believe future works on specifying d,

q, and the weighting parameter will generate an improved estimate.

To summarize, this study is a worthwhile examination of the proposed model and

accessibility measure in Shanghai. We suggest that future studies on the geospatial

structure of Shanghai consider this proposed methodology. Although this study still

has limitations, considering the significant results, this study is relatively meaningful in

practice, particularly for transportation and real estate studies. It would be interesting

for future studies to focus on improving station identification and quantitative score

construction using advanced methodologies, so that the spatial e�ects from di�erent

geographical sites will be better revealed.
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