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Abstract

We propose to use a unified frequency domain cross-validatory (FDCV)

estimator for the HAC standard error estimator. Our proposed method

allows for model/tuning parameter selection across parametric and

nonparametric estimators at zero frequency simultaneously. Our can-

didate class C consists of REML-based autoregressive spectrum esti-

mators and lag-weights estimators with Parzen kernel. In the Monte

Carlo study, I demonstrate the reliability of our FDCV compared with

the popular HAC estimators of Andrews-Monahan and Newey-West.
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Chapter 1

Introduction

Essentially, all models are

wrong, but some are useful.

George E. P. Box, 1987

In many regression problems involving economic and financial time series, we

tend to have autocorrelated errors. Under such circumstances, the OLS coe�cient

estimator’s consistency will be preserved, but the standard error estimator derived

under the uncorrelated error framework will no longer be consistent. Hence, the

confidence interval and test statistics that are based on the usual standard error

estimator of the OLS coe�cients can be distorted and the statistical inference is

not credible. Such issues remain even when the length of our data is large. In the

past 30 years, several heteroskedasticity and autocorrelation consistent (HAC)

standard error estimators such as the one proposed by Newey and West (1986,

1994), Andrews (1991), and Andrews and Monahan (1992) have been introduced.

They are implemented in various statistical packages. We will focus on the special

case of estimating the standard error of the sample mean of a stationary univariate

time series. In this case, our regression will only include an intercept

Xt = µ+ "t
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and the OLS estimator of µ is just the sample mean of time series {Xt}n�1
t=0

µ̂ = Xn =
1

n

n�1X

t=0

Xt

Under the assumption that {Xt} is stationary and has short memory (the spectral

density of {Xt} at zero frequency f(0) is finite and positive), we want to conduct

valid inference for µ when the Xt are autocorrelated. Let cj = Cov(Xt, Xt�j) be

the lag-j autocovariance function, then we have

V ar(µ̂) = V ar(Xn)

= V ar(
1

n

n�1X

t=0

Xt)

=
1

n2

h
V ar(X0) + Cov(X0, X1) + ...+ Cov(X0, Xn�1)

+ Cov(X1, X0) + V ar(X1) + ...+ V ar(Xn�1)
i

=
1

n2

h
nV ar(Xt) + 2(n� 1)Cov(Xt, Xt�1)

+ 2(n� 2)Cov(Xt, Xt�2) + ...+ 2Cov(Xt, Xt�n+1)
i

=
1

n

h
c0 + 2

n�1X

j=1

(
n� j

n
cj)

i

Note that one can show that asymptotically,

c0 + 2
n�1X

j=1

(
n� j

n
cj)

n!1���!
1X

j=�1

cj

We call S2 =
P1

j=�1 cj the long-run variance. The long-run variance is closely

connected with the concept of spectral density. The spectral density f of a time

series {Xt} at frequency ! is defined as

f(!) =
1

2⇡

1X

j=�1

cj exp(i!j) ! 2 [�⇡, ⇡]

In particular, when ! = 0, we can obtain a relationship between the spectral
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density at zero frequency f(0) and the long-run variance S2

nV ar(Xn) ! S2 = 2⇡f(0)

Estimation of the spectral density at zero frequency has been the heart of

the HAC problem of the past 30 years. It is important to note that spectral

density is a frequency domain concept, we will provide a more thorough overview

of concepts and techniques of frequency domain time series analysis in Chapter

2. One can estimate f(0) parametrically or nonparametrically. To estimate f(0)

parametrically, we can estimate a time series model and construct the value of

f(0) that this model implies. One of the most popular parametric estimates

is the autoregressive spectrum estimate. In practice, the user needs to choose

the order of the autoregressive model. On the other hand, one can estimate

f(0) nonparametrically. A well-known class of nonparametric estimators in the

literature are the lag-weights estimators. The tuning-parameter selection problem

in this case is the choice of the truncation point or bandwidth. Note that the

choice of the kernel function for nonparametric estimation is also a problem that

users must face.

The first-generation answers to the HAC problem are based on minimizing

some local criteria such as mean squared error (MSE) of f̂(0)

MSE(f̂(0)) = E
h⇣

f̂(0)� f(0)
⌘2i

using a lag-weights estimator (see Andrews (1991)). The choice of the kernel

can be motivated by the asymptotic properties of the corresponding estimate,

but the choice of the truncation point is much more challenging since the opti-

mal choice in terms of criteria like MSE depends on the actual unknown spectral

density. In practice, Andrews (1991) and Andrews and Monahan (1992) propose

plug-in approaches to estimate the optimal truncation point or bandwidth. Unfor-

tunately, the first-generation HAC estimator based on nonparametric estimation

has a substantial mean square error under certain data-generating mechanisms.

In particular, the nonparametric estimator will have desirable performance if the

spectral density function is relatively flat around zero, such as the case of white

3



noise but will have a substantial bias if the spectrum has a peak at zero frequency.

The second-generation answer to the HAC problem uses the idea of prewhiten-

ing to address the bias issue. Andrews and Monahan (1992) propose using a fixed-

order autoregressive filter to transform the data such that the spectrum of the

transformed data will be flatter in a neighborhood of zero frequency and there-

fore the nonparametric estimator will be less biased. The idea of prewhitening

was subsequently implemented by Andrews and Monahan (1992) and Christiano

and Den Haan (1996) as a part of their HAC estimators. The HAC literature

measures performance by the coverage rates of the confidence intervals for the

regression parameters. In the simulation study of Andrews and Monahan (1992),

such fixed-order prewhitening can improve the performance of the coverage prob-

ability in many cases. In Andrews and Monahan’s simulation study, the filter is

an AR(1) filter based on the least-squares estimator of the autoregressive model.

What we view as the second-generation answer to the HAC problem is an

attempt to combine the parametric approach and nonparametric approach. The

fixed-order autoregressive filter serves as a parametric component and the nonpara-

metric estimator allows for the non-flatness in the spectral density of the prewhin-

tened data. However, as these approaches are currently implemented, there is no

model selection of the order of the prewhitening filter. Den Haan and Levin (1997)

perform a simulation study that shows the drawbacks of fixed-order prewhiten-

ing. They show that if the first-order autocorrelation of the prewhitened series is

small, but higher-order autocorrelation coe�cients are substantial, the confidence

interval of prewhitening-based HAC methods tend to significantly overcover or

undercover µ. Den Haan and Levin (1997) point out that such poor performance

is due to fixed-order prewhitening. Furthermore, using least-squares to estimate

the autoregressive filter may not be desirable. If our data generating process has

a strong peak in the spectral density at or near zero frequency, using an AR(1)

filter based on the least-squares estimator fails in prewhitening the data. In this

case, the spectral density of the transformed data still has a substantial peak

around zero frequency. But if the underlying data generating process is really an

autoregression, then a good parameter estimator, such as the restricted likelihood

estimator (REML), will lead to a good prewhitening (See Cheang and Reinsel

4



(2000), Harville (1974) and Chen and Deo (2012)). If we knew that actual data

generating mechanism was truly an autoregression, then we should use the para-

metric autoregressive spectral density estimator rather than the nonparametric

approach. The central issue, however, is that we do not know the actual data

generating mechanism. Therefore, we propose to use a method that can allow

for unified model selection across both parametric and nonparametric estimators.

Our proposed unified model selection for HAC standard error estimation is based

on the idea of frequency domain cross-validation (FDCV).

FDCV was originally purposed by Wahba and Wold (1975) to select the tuning

parameter of spline-based spectrum estimates. Beltrao and Bloomfield (1987) pro-

pose a cross-validated log likelihood (CV LL) for cross-validation in the frequency

domain to select the bandwidth of average periodogram estimates. Hurvich (1985)

uses the cross-validation function of Wahba and Wold (1975), but instead of re-

stricting attention to splines, he allows for an arbitrary estimator of the spectral

density. Hurvich defines a frequency domain leave-out-one version of any spectrum

estimate, opening up the possibility for unified selection among several types of

estimators, simultaneously including nonparametric estimators and parametric es-

timators. All of the frequency domain cross-validation methods described above

originally focused on the entire frequency range, [0, ⇡]. The use of this global

frequency band makes such methods apparently incompatible with the problem of

HAC as HAC focuses on the spectrum at zero frequency.

In this thesis, we will propose a localized version of FDCV for the HAC prob-

lem, based on a class of candidates that includes both autoregressive (REML-

based) estimates and nonparametric estimates, and we will examine in simula-

tions the coverage rates of the resulting confidence interval for µ in comparison

with the coverage rates corresponding to the Newey-West and Andrews-Monahan

methods. Chapter 2 describes essential concepts and techniques of frequency do-

main time series analysis. It will also include the foundation and early works on

FDCV in the spectrum estimation literature by Beltrao and Bloomfield (1987) and

Hurvich (1985). Chapter 3 introduces a unified approach based upon FDCV for

HAC standard error estimation. Chapter 4 reports Monte-Carlo results for several

kernel-based HAC methods and FDCV (A detailed description of the kernel-based
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HAC approaches will also be provided). Chapter 5 provides some concluding re-

marks.
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Chapter 2

Informal Overview of Frequency

Domain Cross-Validation

We start with an overview of some critical concepts in time series analysis, espe-

cially techniques and results in the frequency domain. After that, we will review

frequency domain cross-validation (FDCV) methods in the spectrum estimation

literature.

2.1 Basic Concepts and Techniques of Frequency

Domain Time Series Analysis

2.1.1 Discrete Fourier Transform, periodogram

Let {xt}n�1
t=0 to be a real-valued data set. We define the discrete Fourier trans-

form (DFT) of {xt}n�1
t=0 to be the sequence of complex numbers

Jj =
1

n

n�1X

t=0

xt exp(�i!jt) j = 0, ..., n� 1

where !j is the j-th Fourier frequency defined as !j =
2⇡j
n

Given a sequence of complex numbers {zj}n�1
j=0 , we define the inverse Fourier

7



2.1 Basic Concepts and Techniques of Frequency Domain Time Series
Analysis

transform of {zj}n�1
j=0 to be

n�1X

j=0

zj exp(i!jt) t = 0, ..., n� 1

It can be shown that {xt} is exactly the inverse Fourier transform of {Jj}

xt =
n�1X

j=0

Jj exp(i!jt) t = 0, ..., n� 1

As a function of the Fourier frequency !j, the periodogram I(!j) at Fourier

frequency !j is defined as

I(!j) =
n

2⇡
|Jj|2

2.1.2 The Spectrum

Now we treat our time series as a sequence of random variables. A time series

{Xt} is said to be weakly stationary if it satisfies:

(i) E(Xt) = µ, a constant

(ii) Cov(Xt, Xs) depends only on t� s

If we assume that our process has zero mean, then the autocovariance sequence

{cr} is

cr = Cov(Xt, Xt+r) = E(XtXt+r) = E(XtXt�r) = c�r

An important estimate of cr is the sample autocovarinance

ĉr =
1

n

n�1X

t=|r|

xtxt�|r|

One can show an essential relationship between sample autocovariance ĉr and the

periodogram I(!):

I(!) =
1

2⇡

X

|r|<n

ĉr exp(�ir!)

and

ĉr =

Z
⇡

�⇡

I(!) exp(ir!)d!

8



2.1 Basic Concepts and Techniques of Frequency Domain Time Series
Analysis

We define the spectral density f(!) of a time series at frequency ! to be

f(!) =
1

2⇡

1X

r=�1
cr exp(ir!) ! 2 [�⇡, ⇡]

An important concept that will later appear in many important works in the

HAC literature is the concept of the q-th generalized derivative of a spectral

density f(!) given by

f (q)(!) =
1

2⇡

1X

r=�1
|r|qcr exp(ir!) ! 2 [�⇡, ⇡]

2.1.3 Spectrum Estimation

Estimation of the spectral density is a fundamental problem in time series anal-

ysis. There are two popular types of spectrum estimates: classical spectrum

estimates and autoregressive spectrum estimates.

The classical spectrum estimate is based on the asymptotic theory of the peri-

odogram. A widely-used approximation that is exact for Gaussian white noise is

that the periodogram ordinates I1, .., Iñ, where ñ is the largest integer less than or

equal to n�1
2 , are independently distributed as f(!j)

1
2�

2
2. Indeed, under regularity

conditions that include short memory, it can be shown that

lim
n!1

E
⇣ Ij
f(!j)

⌘
= 1 and lim

n!1
V ar

⇣ Ij
f(!j)

⌘
= 1

Therefore, even though periodogram ordinate Ij is an asymptotically unbiased

estimate of f(!j), lim
n!1

V ar(I(!j)) does not approach zero as n goes to infinity.

Hence, Ij is not a consistent estimator of f(!j). However, one can obtain an

asymptotically unbiased and consistent estimate by averaging the periodogram

ordinates. This type of spectrum estimate is known as a discrete periodogram

average estimate and has the form

f̂(!j) =
mX

k=�m

gkIj�k

with gk � 0 and gk = g�k for all k,
P

|k|m
gk = 1 and lim

n!1

P
|k|m

(gk)2 = 0.

9



2.1 Basic Concepts and Techniques of Frequency Domain Time Series
Analysis

Here, m is tuning constant that determines the number of periodogram ordinates

to include in estimating f(!j). In the nonparametric spectrum estimation liter-

ature, such a tuning constant is called the bandwidth. From Brockwell, Davis,

et al. (1991), under some weak assumptions on {Xt}, if the bandwidth m is a

function of sample size n satisfying m ! 1 and m

n
! 0 as n ! 1, we will have

lim
n!1

E(f̂(!)) = f(!) 8! 2 [0, ⇡]

V ar(f̂(!)) ⇠

8
><

>:

2f 2(!)
P

|k|m
g2
k

if ! = 0 or ! = ⇡.

f 2(!)
P

|k|m
g2
k

otherwise

Having lim
n!1

P
|k|m

(gk)2 = 0 ensures consistency of the discrete periodogram av-

erage estimate.

Another widely-used estimator in both the spectral density estimation litera-

ture and the HAC literature is the lag-weights (also called Blackman-Tukey)

estimate, defined as

f̂(!) =
X

|r|h

w(
r

h
)ĉr exp(ir!)

where h is a non-negative integer, called the truncation point. The function w(x)

is even and satisfying w(0) = 1, |w(x)|  1 for all x and w(x) = 0 for |x| > 1.

The function w(x) is called the lag window or kernel. From the relationship

between sample autocovarinace ĉr and periodogram I(!j), we can also express the

lag-weights estimate as an integral average of the periodogram

f̂(!) =

Z
⇡

�⇡

W (! � �)I(�)d�

where W (�) is called the spectral window, and is defined as

W (�) = 1
2⇡

P
|r|h

w( r
h
) exp(ir�). Thus, the lag-weights estimate is an integral

average of the periodogram.

When n ! 1, for lag-weights estimate

V ar(f̂(!)) ⇠

8
><

>:

2f 2(!)h
n

R 1

�1 w
2(x)dx if ! = 0 or ! = ⇡.

f 2(!)h
n

R 1

�1 w
2(x)dx otherwise

10



2.1 Basic Concepts and Techniques of Frequency Domain Time Series
Analysis

It is clear that V ar(f̂(!)) ! 0 as n ! 1. Hence, we have that the lag-weights

estimate is consistent. Note that the asymptotic unbiasedness also follows the

result from the discrete periodogram average estimate and only requires that h !

1 and h

n
! 0 as n ! 1.

There are two critical questions regarding the lag-weights estimate: the choice

of kernel and the choice of truncation parameter h. We proceed to analyze

properties of several popular window functions both in the spectrum estimation

and in the HAC literature. Those windows are Bartlett window, Parzen window,

Tukey-Haning window, and Quadratic Spectral (QS) window.

Bartlett window: w(x) =

8
><

>:

1� |x| if |x|  1

0 otherwise

Parzen window: w(x) =

8
>>>>><

>>>>>:

1� 6x2 + 6|x|3 if |x|  1
2

2(1� |x|)3 if 1
2  |x|  1

0 otherwise

Tukey-Hanning window: w(x) =

8
><

>:

1+cos(⇡x)
2 if |x|  1

0 otherwise

QS window: w(x) = 25
12⇡2x2 (

sin( 6⇡x
5 )

6⇡x
5

� cos(6⇡x5 ))

Note that for QS window, we cannot write it as a lag-weights estimator of the

form we described above. The spectral density that QS window associated with is

f̂(!) =
n+1X

j=�n+1

w(
j

h
)ĉr exp(ir!)

However, for the coherence of discussion, we would present the results of QS under

the section of the lag-weights estimator.

With the formula of the asymptotic variance of the lag-weights estimate, we

can obtain the following results for ! 6= 0 and ! 6= ⇡ :

11



2.1 Basic Concepts and Techniques of Frequency Domain Time Series
Analysis

Asymptotic Variance
Bartlett 0.667h

n
f 2(!)

Parzen 0.539h

n
f 2(!)

Tukey-Hanning 0.750h

n
f 2(!)

QS 0.990h

n
f 2(!)

Under suitable regularity conditions it can be shown that for ! 6= 0 and ! 6= ⇡,

r
n

h

⇣
f̂(!)� f(!)

⌘
! N(0, f 2(!)

Z 1

�1

w2(x)dx)

Another important question is what is the optimal choice of the truncation pa-

rameter h of the lag-weights estimate and the related properties of such truncation

parameter choice. And it is very clear that such optimal choice of h will determine

the speed of convergence of the distribution above.

But first, let us introduce an important concept called characteristic ex-

ponent. A characteristic exponent c is the largest positive integer such that

lim
x!1

1�w(x)
|x|c exists and is non-zero. For Bartlett window, the characteristic ex-

ponent is 1 and for Parzen, Tukey-Hanning and QS window, the characteristics

exponent is 2. The characteristic exponent is an essential quantity for determing

the asyptotically optimal bandwidth choice. We define the mean squared percent-

age error (MSPE) at frequency ! with bandwidth h as

MSPE(!;h) = E
⇣⇣ f̂(!;h)� f(!)

f(!)

⌘2⌘

When the objective function is max
0<!<⇡

MSPE(!), Priestley (1981) shows that if

h⇤ = argminh( max
0<!<⇡

MSPE(!;h))

then

max
0<!<⇡

MPSE(f̂(!;h⇤)) = O(n� 2c
c+1 )

This result suggests that if the spectral density is su�ciently smooth it is asymp-

totically preferable to choose the characteristic exponent c as large as possible.

Since the Bartlett window has c = 1, it is asymptotically inferior in terms of

MSPE(f̂(!);h⇤) to the Parzen, Tukey-Hanning, and QS windows.

12



2.1 Basic Concepts and Techniques of Frequency Domain Time Series
Analysis

In particular, the Bartlett window has

h⇤ = O(n
1
3 ) max

0<!<⇡

MSPE(f̂(!;h⇤)) = O(n� 2
3 )

and for Parzen, Tukey-Hanning and QS window

h⇤ = O(n
1
5 ) max

0<!<⇡

MSPE(f̂(!;h⇤)) = O(n� 4
5 )

Another practical consideration is that we do not want the spectral density esti-

mate to generate a negative result. Note that Bartlett and Parzen will always give

nonnegative results, but Tukey-Hanning and QS might not. For the HAC prob-

lem, a negative estimator of f(0) is completely useless for inference as it implies

that the estimator of the variance of the sample mean is negative.

All the estimators we described above are nonparametric as they do not as-

sume that our data was generated by any prescribed model. However, if we assume

that our data follows exactly a particular data generating mechanism or can be

well described by a particular model, we can introduce another type of spectrum

estimate: parametric spectrum estimate. The one that is commonly used is

the autoregressive spectrum estimates. Berk (1974) proves that under some

weak conditions on {Xt}, if the order of the autoregressive model is asymptoti-

cally su�cient to overcome bias, the autoregressive spectrum estimate can yield

a consistent estimator of the spectral density of Xt. The asymptotic variance of

the autoregressive spectrum estimator is equivalent to that of the nonparametric

smoothed periodogram estimator. Thus, autoregressive estimates can be used in

a nonparametric context. We will see later in the simulation section that the

parametric estimator can be useful in the nonparametric problem of HAC.

A weakly stationary process {Xt} is said to be an autoregressive process

of order p, denoted as AR(p), if there exist constants �1, ...,�p such that

Xt = �1Xt�1 + ...+ �pXt�p + "t for all t

"t
i.i.d⇠ N(0, �2)

"t independent of Xt�s for all s > 0

13



2.2 Frequency Domain Cross-Validation

It can be shown that if the process follows an AR(p), then the spectral density is

of the form

f(!) =
�2

2⇡|1�
P

p

k=1 �k exp(i!k)|2

It then follows that if we can estimate the model parameters, �1, ...,�p, �2 with

�̂1, ..., �̂p, �̂2, we can estimate the spectral density f(!) with

f̂(!) =
�̂2

2⇡|1�
P

p

k=1 �̂k exp(i!k)|2

There are two critical problems regarding autoregressive spectrum estimation.

First, how many lagged observations to include in the model. In other words,

what value of p should we use? Note that if all candidate models are autoregressive

models, we could use classical model selection criteria such as Akaike’s information

criterion (AIC) (See Akaike (1974)), Bayesian information criterion (BIC) (See

Schwarz et al. (1978)), etc. The second problem is, given p, how to estimate

the model coe�cients. There are many existing methods, including Yule-Walker,

Burg, least-squares, maximum likelihood, and restricted maximum likelihood. We

will discuss those methods more in Chapter 3 and the Appendix.

2.2 Frequency Domain Cross-Validation

As we have discussed above, for a nonparametric estimate (discrete periodogram

average estimate or lag-weights estimate), the user must select a bandwidth or

truncation parameter, and for a parametric estimate, one needs to determine the

order of the model. To determine which bandwidth or order is optimal, one might

attempt to minimize some criterion that measures the discrepancy between the

actual spectral density function and the spectrum estimate. However, in terms

of such criteria, the optimal bandwidth of a nonparametric estimate (discrete

periodogram average estimate or lag-weights estimate) or the optimal order for

a parametric estimate depends on the actual spectral density function, which is

unknown in practice. Frequency domain cross-validation methods can be used to

give a data-driven selection of a spectrum estimate without restricting the form,

eg., parametric or nonparametric. Wahba and Wold (1975) were the first to use
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2.2 Frequency Domain Cross-Validation

FDCV for selection of tuning constants in a spectral estimator. They focused

on spline-based estimators. The work done by Beltrao and Bloomfield (1987)

focuses on nonparametric spectral density estimation. They show that minimizing

mean integrated square error (MISE) is asymptotically equivalent to minimizing

a cross-validatory log-likelihood (CVLL). So an optimal bandwidth can be chosen

by minimizing CVLL. All candidate estimators in Beltrao and Bloomfield are

nonparametric. Hurvich (1985) proposes a unified FDCV method that can select

tuning constants for any types of estimators as long as such the estimator can be

computed using the actual data {xt}. For example, the method of Hurvich allows

us to select between a parametric estimate and a nonparametric estimate, which

we will show later has a considerable advantage in the HAC problem. We will

introduce the philosophy and an overview of Beltrao and Bloomfield (1987) and

focus on Hurvich (1985) as his unified FDCV method is the foundation of our

proposed HAC method .

First, let us introduce several measures of the discrepancy between the actual

spectral density and its estimate.

The mean squared logarithmic error (MSLE) of a spectral density estimate

f̂ at a fixed frequency ! is defined as

MSLE(f̂(!)) = E
h⇣

log f̂(!)� log f(!)
⌘2i

The mean integrated squared percentage error (MISPE) of a spectral

density estimate f̂ over a frequency band [0, ⇡] is defined as

MISPE(f̂) = E
h Z ⇡

0

⇣ f̂(!)� f(!)

f(!)

⌘2

d!
i

The mean integrated squared logarithmic error (MISLE) of a spectral

density estimate f̂ over a frequency band [0, ⇡] is defined as

MISLE(f̂) = E
h Z ⇡

0

⇣
log f̂(!)� log f(!)

⌘2

d!
i

Beltrao and Bloomfield (1987) and Hurvich (1985) use global measures, on the

entire frequency band [0, ⇡]. Note, however, that the HAC problem is inherently
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2.2 Frequency Domain Cross-Validation

local to zero frequency. This fact will motivate our modification in Chapter 3 of

the FDCV method of Hurvich.

Beltrao and Bloomfield (1987) focus on mean integrated squared percentage

error on [0, ⇡]. However, instead of integrating over Fourier frequencies, Beltrao

and Bloomfield obtain a discrete version of the discrepancy by summing over

the Fourier frequencies between 0 and ⇡ but ignoring the 0-th and n

2 -th Fourier

frequency. It is of the form

E
h 1
ñ

ñX

j=1

⇣ f̂(!j)� f(!j)

f(!j)

⌘2i

where ñ is the largest integer less than or equal to n�1
2 . Beltrao and Bloomfield

consider the bandwidth selection problem for discrete periodogram average esti-

mates. If we denote discrete periodogram average estimate with bandwidth m at

frequency !j as f̂(!j;m), and define the specific criterion Bloomfield and Beltrao

are using as MISPEBB, we have that

MISPEBB(m) = E
h⇣ 1

ñ

ñX

j=1

f̂(!j;m)� f(!j)

f(!j)

⌘2i

MISPEBB(m) is not a feasaible criterion as it depends on the unknown spectral

density f . Whittle’s approximation for minus twice the Gaussian log-likelihood

for spectral density f is

A =
ñX

j=1

h
log(f(!j)) +

I(!j)

f(!j)

i2

Taking the first derivative of log-likelihood, it is easy to see that A is minimized

at f(!j) = I(!j). For discrete periodogram average estimate, this can be achieved

by taking su�ciently small m. Hence, such direct minimization of A will not help.

The approach of leave-one-out cross-validation can be a solution to this issue.

Bloomfield and Beltrao construct a leave-one-out cross-validatory version of A,

given by

CV LL(m) =
ñX

j=1

h
log(f̂�j(!j;m)) +

I(!j)

f̂�j(!j;m)

i2
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2.2 Frequency Domain Cross-Validation

where f̂�j(!j;m) omits I(j) from f̂(!j;m) when f̂ is a periodogram average esti-

mate.

They show that as n goes to 1,

1

ñ
CV LL(m) =

1

ñ

ñX

j=1

h
log f(!j)+

I(!j)

f(!j)

i
+
1

2
MISPEBB(m)+op(MISPEBB(m))

where the term op(MISPEBB(m)) is uniform in m.

Therefore, minimizing the CV LL on the left hand side with respect to m is

approximately equivalent to minimizing MISPEBB on the right hand side for n

large as 1
ñ

P
ñ

j=1

h
log f(!j) +

I(!j)
f(!j)

i
does not depend on m.

Beltrao and Bloomfield restrict the candidates to nonparametric spectral esti-

mates. Hurvich (1985) extends the FDCV approach’s applicability by introducing

a generalized leave-one-out version of the spectral density estimate. Hurvich’s pur-

pose is to develop a method that allows researchers to do tuning parameter/model

selection across parametric and nonparametric estimates simultaneously. There

are two methods introduced in his paper: an autocovariance-based approach and

a DFT-based approach. With the autocovariance-based approach, the researcher

will be able to do model selection from any spectral density estimate that be ex-

pressed as a function of the sample autocovariances. Those estimates include the

lag-weights estimate, discrete periodogram average estimate, and autoregressive

estimate using the Yule-Walker method. For example, the autocovariance-based

approach allows researchers to choose between a Yule-Walker autoregressive esti-

mate and a periodogram average estimate based on some objective criterion. This

approach extended the applicability of the FDCV method developed by Bloomfield

and Beltrao, whose approach only allows for model selection within periodogram

average estimates. The DFT-based approach of Hurvich is more generally applica-

ble than his autocovariance-based approach. This approach allows the candidates

to include any spectral density estimates based on the actual data. Note that not

all the spectral density estimates can be expressed using sample autocovariance,

such as autoregressive estimate with least-squares or maximum likelihood estimate

or restricted maximum likelihood estimate. The DFT-based approach is the one

we will use in our FDCV method for HAC standard error estimation due to its
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2.2 Frequency Domain Cross-Validation

generality. Let us review this approach step by step.

Recall that MISPEBB is the one used by Beltrao and Bloomfield as their dis-

crepancy, Hurvich also considers the discrete version of MISPE as a discrepancy,

but he also considers the discrete version of MISLE as his discrepancy:

MISPEH = E
h 1
ñ

ñX

j=1

⇣ f̂(!j)� f(!j)

f(!j)

⌘2i

MISLEH = E
h 1
ñ

ñX

j=1

⇣
log f̂(!j)� log f(!j)

⌘2i

Note that the definitions of MISPEH and MISPEMM are di↵erent as we no

longer require f to be a nonparametric estimate and bandwidth input is dropped

in the formula. For MISPEH and MISLEH , the cross-validatory estimates are

CV LLH =
1

ñ

ñX

j=1

h
log f̂�j(!j) +

I(!j)

f̂�j(!j)

i2

CVMSEH =
1

ñ

ñX

j=1

nh
log f̂�j(!j)�

⇣
log I(!j) + C

⌘i2
� ⇡2

6

o

where C = 0.577216... is the Euler constant and f̂�j is the generalized leave-one-

out version of the spectral density estimate. Hurvich suggests the use of CVMSEH

as the selection criterion, and the selected spectral estimator is the one with the

lowest CVMSEH value. Now we proceed to describe how the generalized leave-

one-out version of the spectral density estimate is obtained.

First, assume that a zero-mean process generates our data and we know that

the process has zero mean. Hurvich (1985) defines the leave-one-out version of

DFT, J�j

k
for 0  k  n� 1 and 1  j  n as

J�j

k
=

8
><

>:

Jk if k 6= j and k 6= n� j

1
2(Jk�1 + Jk+1) if k = j and k = n� j

Then we can use the inverse Fourier transform to define the leave-one-out version

of data, {x�j

t } by

x�j

t =
n�1X

k=0

J�j

k
exp(i!kt)
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2.2 Frequency Domain Cross-Validation

Based on this leave-one-out version of the data, Hurvich defined the generalized

leave-one-out spectral density estimate as

f̂�j(!j) = f̂(!j; {x�j

t })

Unfortunately, the assumption that the mean is known to be zero is a very

strong assumption which typically does not hold in practice. Indeed, if this as-

sumption held, then HAC standard errors for Xn would not be needed since µ

would be known. We will henceforth restrict attention to spectral estimates and

cross validation functions that are invariant to the addition of a constant to the

data set. If we drop the zero mean assumption, the DFT-based leave-one-out

version of the data is not invariant under adding a constant because

J�1
1 =

1

2
(J0 + J2)

and

J0 =
1

n

n�1X

t=0

xt = Xn

Hence, J�1
1 is not invariant under adding a constant. To handle this issue, we now

redefine the leave-out-one version of the DFT for j = 0, ..., n�1 and k = 0, ..., n�1

as

J�j

k
=

8
>>>>>>>><

>>>>>>>>:

Jk if k 6= j and k 6= n� j

1
2(Jk�1 + Jk+1) if k = j or k = n� j (j 6= 1)

J2 if k = j = 1

Jn�2 if k = n� 1 and j = 1

We also need to adjust the computation of the leave out one version of data x�j

t

by removing the zero frequency and we therefore redefine

x�j

t =
n�1X

k=1

J�j

k
exp(i!kt)

Under this definition, the DFT-based FDCV is invariant under adding a constant.
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Chapter 3

A Unified Cross-Validatory

Approach to HAC Standard

Error Estimation

3.1 A Unified Cross-Validatory Approach to the

Estimation of Spectral Density at Zero Fre-

quency

In Chapter 2, we pointed out that Hurvich (1985) provides the generalized leave-

out-one definition of spectrum estimate f̂�j(!j) = f̂(!j; {x�j

t }), which can be

applied for any spectrum estimate f̂ . This opens up the possibility for model

selection to choose models over a larger class of candidates. This section introduces

a cross-validatory approach for HAC standard error estimation by providing a

unified truncation parameter selection procedure for the spectrum estimate at

zero frequency.

Consider the model candidate class C of spectrum estimates. C is composed

of REML-based autoregressive spectrum estimates from order zero to five and lag-

weights estimates based on a Parzen kernel with truncation point 1 to m(n), where

m(n) increases in n and takes an integer value. All members of this candidate class

C have a well-defined generalized leave-out-one version of the spectrum estimate.
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3.2 Discussion

We select the estimate from C that minimizes the HAC version of CVMSE

CVMSEHAC(f̂) =
1

bñcc

bñccX

j=1

nh
logf̂�j(!j)�

⇣
logI(!j) + C

⌘i2
� ⇡2

6

o

where c 2 (0, 1) is a constant. In practice, we suggest to take c = 4
5 . The chosen

spectrum estimate will be our unified cross-validatory estimate, and we will use it

to estimate the spectral density of our time series at zero frequency.

3.2 Discussion

Our purposed FDCV method for the HAC problem and Hurvich (1985) di↵er in

the cross-validation function and the candidate class C. They also di↵er in the

definition of the leave-one-out version of the data set, as shown in Chapter 2.

3.2.1 Cross-Validation Function

The cross-validation function CVMSE of Hurvich (1985) is defined over a fre-

quency band between the 1-st to the ñ-th Fourier frequency and CVMSEHAC is

defined over a frequency band between the 1-st to the (bñcc)-th Fourier frequency

for any c 2 (0, 1).

Why is such a change essential? Andrews (1991) mentioned the potential

application of the FDCV method proposed by Beltrao and Bloomfield (1987) to

the HAC problem. However, he considered the method to be not well-suited to

HAC standard error estimation as the cross-validation criterion CVMSE is a

global measure over the frequency band [0, ⇡], while the HAC problem focuses

on estimating the density at a single frequency, zero. This modification makes

the criterion function asymptotically local to zero frequency. Indeed, the largest

Fourier frequency in CVMSEHAC approaches zero for c 2 (0, 1),

lim
n!1

2⇡(n2 )
c

n
= lim

n!1
⇡
⇣n
2

⌘c�1

= 0

Philosophically, our application of FDCV to the HAC problem is motivated by

John Tukey’s idea of ”borrowing strength.” We borrow strength from the neigh-
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3.2 Discussion

boring frequencies around zero to obtain a stable estimate of f(0).

From simulations, we suggest taking c = 4
5 to handle the bias variance trade-o↵

inherent in the frequency range used in the cross-validation function.

3.2.2 Candidate Class

The model candidates class of Hurvich (1985) includes Daniell average periodogram

estimates and Yule-Walker autoregressive estimates. Our candidate class C con-

sists of lag-weights estimates with the Parzen kernel and REML autoregressive

estimates.

For the nonparametric model candidates, our shift from the Daniell peri-

odogram average estimates to lag-weights estimates with the Parzen kernel is

motivated by findings of Newey and West (1986, 1994), Andrews (1991) and An-

drews and Monahan (1992). All those works are based on lag-weights estimators.

Newey and West (1994) conclude, based on a simulation, that the e↵ect of the

choice of kernel between Bartlett, Parzen, and QS (quadratic spectral) on the

performance of the estimator is negligible. We use the Parzen kernel as it never

generates negative estimates as opposed to QS, and it has lower asymptotic vari-

ance theoretically compared with Bartlett if the infeasible optimal truncation point

were used.

For parametric model candidates, we propose to estimate autoregressive mod-

els using REML instead of Yule-Walker, MLE or least-squares (least-squares is

used to estimate the AR(1) filter in Andrews and Monahan (1992) and Newey

and West (1994)). Our use of REML to estimate the autoregressive model is

based on two considerations. First is the reduction of bias of REML compared

with other autoregressive estimators. The bias of the Yule-Walker estimator is

more prominent than other popular autoregressive estimators in a small sample.

Yule-Walker performs poorly for autoregressive models having a root that is close

to the unit circle (or more generally when the spectral density function has strong

peaks or troughs). For least-squares and MLE, Cheang and Reinsel (2000) showed

that given an AR(1) process, the bias of estimation of the autoregressive coe�cient

will be as much as doubled when the root is close to the unit circle. They also

showed that the REML estimates of the autoregressive parameters, which do not
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3.2 Discussion

require knowledge of the mean, perform equivalently up to a term of O( 1
n
) com-

pared to MLE or least-squares with the infeasible knowledge of the mean. Notice

that one potential problem of the HAC method is that if the data generating mech-

anism has a sharp peak in the spectral density at zero frequency, using an AR(1)

filter based on the least-squares estimator might fail to completely prewhiten the

data. It is clear that if the autoregressive estimators are based on REML, it will

lead to a better prewhitening. This motivates our use of REML to estimate the

autoregressive model.

On the other hand, even though our cross-validation procedure is invariant

under adding a constant (whether to use mean-corrected data will not influence

the chosen model candidate), we need to apply our chosen spectral estimator to

mean-corrected data. This is because the lag-weights estimator is not invariant

under adding a constant. For parametric estimators, Yule-Walker, least squares,

or MLE estimators are not invariant under adding a constant, so we need to sub-

tract the sample mean when estimating the spectrum using our chosen candidate

estimates. However, for Yule-Walker, Least-squares, and MLE, demeaning the

data will compromise their performance. One advantage of REML is that it is

naturally invariant under adding a constant, which is a desirable property for

spectrum estimation of a process with an unknown mean.

Note that REML estimation of the autoregressive model in the time series

context has not been heretofore implemented in any software packages as far as

we are aware. Many researchers suggest using it in the context of mixed lin-

ear e↵ects model, which can be specialized to yield autoregressive model. The

restricted likelihood function is not well-defined for non-stationary models. A

REML autoregressive estimator constrained for stationarity is not implemented

in any widely-available packages, as far as we are aware. We will discuss the philos-

ophy and computation of AR(p) REML estimates under stationarity constraints

in Appendix A.
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Chapter 4

Monte-Carlo Study

This chapter will present the results of a Monte-Carlo study comparing our FDCV

and popular kernel-based HAC methods for small sample sizes. We will evaluate

the performance of the methods based on the coverage rate of the confidence

intervals. The first estimator is the cross-validatory estimator described in Chap-

ter 3. The second estimator is the kernel-based HAC method given by Andrews

and Monahan (1992) using the quadratic spectral window, and AR(1) specifica-

tion in their tuning-parameter selection procedure, and the least-squares based

AR(1) prewhitening filter. We call it AM-PW, short for Andrews and Monahan’s

prewhitening based HAC estimator. The third estimator is the kernel-based HAC

estimator given by Newey and West (1994) using Bartlett window as described in

Newey and West (1986, 1994), a nonparametric truncation parameter model selec-

tion procedure, and the least-squares-based AR(1) prewhitening filter. We call it

NW-PW, short for Newey and West prewhitening based estimator. In Section 4.1,

we will provide a step-by-step review of AM-PW and NW-PW HAC estimators.

Section 4.2 investigates several experiments suggested by Andrews and Monahan

(1992) and Den Haan and Levin (1997). We consider two sample sizes, n = 50, 200

and report the coverage rates of the HAC-based confidence intervals at nominal

rates 90%, 95% and 99% based on 3000 replications. The computations for the

AM-PW and NW-PW methods are based on the Sandwich package in R.
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4.1 Step-by-step Review of Kernel-based HAC Estimator

4.1 Step-by-step Review of Kernel-based HAC

Estimator

The AM-PW and NW-PW methods apply a prewhitening AR filter of order m as

an input to the kernel-based automatic truncation parameter selection procedure

from Andrews (1991) or Newey and West (1994). In the simulation study of

Andrews and Monahan (1992) and Newey and West (1994), they set m = 1 and

we will use m = 1 as well in our simulations. The two methods di↵er in their

truncation parameter selection procedure.

Given data {xt}, the two methods select the optimal truncation parameter as

follows.

Step 0: Define x̃t = xt �
P

n�1
t=0 xt.

Step 1: Prewhiten the mean-corrected data

Obtain the prewhitened data {êt} using least-squares

x̃t =
mX

k=1

Âkx̃t�k + êt t = m+ 1, ..., n

The case m = 1 yields the AR(1) filter used in Andrews and Monahan (1992)

and Newey and West (1994) simulation (and the default value for the Sandwich

package in R).

x̃t = Âx̃t�1 + êt t = 2, ..., n

Step 2: Specify a kernel for estimation of the spectral density of {êt}

Andrews (1991) derives the truncation parameter growth rate that minimizes the

asymptotic MSE of the spectral density estimator. The optimal truncation param-

eter sequence for a given kernel depends on the kernel’s smoothness properties, as

indicated by the characteristic exponent, q. For the Bartlett kernel, q = 1; and for

the QS and Parzen kernel, q = 2. For a given kernel with characteristic exponent

q, the asymptotically optimal bandwidth parameter sequence is given by

r⇤ = c
h⇣f (q)(0)

f(0)

⌘2

n
i 1

2q+1
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4.2 Monte-Carlo Results

where c is a constant that depends on the window function. In particular, we have

c =

8
>>><

>>>:

1.1447 Bartlett window

2.6614 Parzen window

1.3221 QS window

Step 3: Calculate the estimated optimal truncation parameter for the specified

kernel in Step 2

To obtain an estimator of the optimal truncation parameter r̂⇤, we will need to

obtain an initial (”pilot”) estimator of f (q)(0) and f(0). This is where Andrews

(1991) and Newey and West (1994) di↵er from each other. The initial estimator

of f (q)(0) and f(0) is obtained parametrically by Andrews, while it is done non-

parametrically by Newey and West.

Andrews suggested to estimate f(0) and f (q)(0) by least-squares fitting of an

AR(1) model to {êt}

Newey and West proposed the initial estimation nonparametrically. The ini-

tial estimator of f(0) and f (q)(0) are based on the lag-weights estimator using

Bartlett, Parzen or QS. Note that Newey and West claim that di↵erent kernels

will not significantly influence the construction of the confidence interval based on

the simulation result. They recommend to use Bartlett kernel.

Step 4: Calculate the spectral density of the prewhitened data {êt} using QS or

Bartlett kernel with its associated estimated optimal truncation parameter in step

3. We denote it as f̂e(0)

Step 5: Calculate the HAC estimate of the spectral density of initial observations

by

f̂(0) =
f̂e(0)

|1�
P

m

k=1 Âk|2

4.2 Monte-Carlo Results

We conducted five sets of experiments for sample sizes n = 50, 200, each with

3000 replications. In the FDCV method for HAC, the class C of candidate spec-

trum estimates consisted of the REML-based autoregressive estimates of order 0

to 5 and lag-weights estimates with Parzen kernels from truncation point 1 to
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4.2 Monte-Carlo Results

b4( n

100)
2
9 c. For each realization, and for each of the candidates f̂ in C, I computed

its respective CVMSEHAC(f̂) with c = 4
5 .

For the REML-based autoregressive estimates, I computed the following model

order selection criteria:

WHREML(f̂) =
1

bñ 4
5 c

bñ
4
5 cX

j=1

nh
logf̂�j(!j)�

⇣
logI(!j) + C

⌘i2
� ⇡2

6

o

In this formula, f̂�j is the leave-one-out version of the REML-based autoregressive

estimate. The criterion is the same as CVMSEHAC(f̂) when f̂ is a REML-based

autoregressive spectrum estimate. I have renamed this quantity to signal that

we are only considering autoregressive spectrum estimates in this case. Here,

WH stands for Wahba-Hurvich, REML stands for REML-based autoregressive

estimates.

Similarly, for the lag-weights estimate with the Parzen window, I computed

the following bandwidth selection criteria:

WHPZ(f̂) =
1

bñ 4
5 c

bñ
4
5 cX

j=1

nh
logf̂�j(!j)�

⇣
logI(!j) + C

⌘i2
� ⇡2

6

o

In this formula, f̂�j is the leave-one-out spectrum estimate for the lag-weights

estimates with Parzen kernel. Note that WHPZ is equivalent to CVMSEHAC

when f̂ is lag-weights estimates with Parzen kernel. Here, PZ stands for Parzen.

I now define a combined criterion function by

WHC(f̂) =

8
<

:
WHREML(f̂) if f̂ is an autoregressive estimate

WHPZ(f̂) if f̂ is a lag-weights estimate

We use the same name for the criterion function as in Hurvich (1985), but the

function is now designed for the HAC problem since the criterion is asymptotically

local to zero frequency. The estimator selected by WHC is the one that minimizes

WHC over the candidate class C.

For WHREML, WHPZ and WHC, after obtaining the selected estimator,

we will demean data set {xt} and apply the selected estimator on the mean-
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4.2 Monte-Carlo Results

corrected time series for estimation at zero frequency. We denote the resulting

spectrum estimators as f̂WHREML(0), f̂WHPZ(0) and f̂WHC(0). Their associated

estimated standard errors for µ̂ = Xn are

�̂WHREML =

s
2⇡f̂WHREML(0)

n� 1

�̂WHPZ =

s
2⇡f̂WHPZ(0)

n� 1

�̂WHC =

s
2⇡f̂WHC(0)

n� 1

where n�1 in the denominator is a finite-sample correction (See Andrews (1991)).

We will use the standard error to compute the nominal 90%, 95% and 99% con-

fidence intervals for µ and report the observed coverage rates for WHREML,

WHPZ and WHC. Notice that for AM-PW and NW-PW, we will directly use

the results from the Sandwich package, which provides the standard error directly.

After the observed coverage rates for each method are obtained, we provide

the relative e�ciency measures for WHC, AM-PW, and NW-PW for each data-

generating mechanism under each sample size at the nominal 95% coverage rate.

The relative e�ciency is a number in [0, 1]. In each case, the method with the

relative e�ciency of 1 is the one with the best performance, and the method with

the lowest relative e�ciency is the one with the worst performance. To compute

the relative e�ciency, we will need to construct a measure for badness. We define

the badness B of the actual coverage rate p for the nominal coverage rate 95% as

B(p) =

8
<

:
2|logit(p)� logit(0.95)| if p  0.95

|logit(p)� logit(0.95)| if p > 0.95

where logit(p) = log( p

1�p
).

In practice, under-coverage is considered to be worse than over-coverage. To

take this asymmetry into account, we use a factor of 2 to penalize under-coverage

in B(p), when p  0.95.

Let us denote p1, p2 and p3 to be the actual coverage probabilities of WHC,
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4.2 Monte-Carlo Results

AM-PW, NW-PW respectively, then we can obtain the relative e�ciency of pi.

e(pi) =
min{B(p1), B(p2), B(p3)}

B(pi)
i 2 {1, 2, 3}

Note that e(pi) 2 [0, 1]. If pi = 1, then logit(pi) = 1. In this case, we will assign

value 0 to e(pi)

We ran five sets of experiments. The data-generating mechanisms for subsec-

tion 4.2.1 are AR(1) processes. For subsection 4.2.2, the data-generating mecha-

nism is a white noise process. For subsection 4.2.3, they are MA(1) processes. The

data-generating mechanisms in Subsections 4.2.4 and 4.2.5 were proposed by Den

Haan and Levin (1997). Notice that we are primarily comparing results between

WHC, AM-PW, and NW-PW. The criteria WHREML and WHPZ are used for

supplementary analysis. The minimum row in the table of the relative e�ciency

of each subsection takes the minimum value of relative e�ciency statistics of all

cases in that experiment.
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4.2 Monte-Carlo Results

4.2.1 AR(1) Processes

Xt = �1Xt�1 + "t "t
i.i.d⇠ N(0, 1)

Table 4.1: Coverage Probabilities for AR(1) Processes: n = 50

�1 Method 90% 95% 99% �1 Method 90% 95% 99%

0.1

WHC 86.7 91.9 97.4

0.3

WHC 81.5 88.7 94.9

WHREML 86.7 91.9 97.4 WHREML 82.1 88.6 94.6

WHPZ 87.2 92.5 97.8 WHPZ 80.6 87.9 95.2

AM-PW 87.7 93.1 97.7 AM-PW 86.5 92.0 97.2

NW-PW 85.3 90.8 96.4 NW-PW 85.2 90.6 96.3

0.5

WHC 79.1 85.3 92.8

0.7

WHC 75.1 81.8 89.9

WHREML 80.3 86.2 92.8 WHREML 79.2 84.5 90.9

WHPZ 76.3 82.9 91.6 WHPZ 68.7 76.7 87.3

AM-PW 85.4 90.6 96.3 AM-PW 82.7 88.1 94.3

NW-PW 84.4 89.9 95.7 NW-PW 81.8 87.5 94.0

0.9

WHC 70.8 77.2 84.7

0.95

WHC 68.6 74.4 82.4

WHREML 75.7 81.5 88.0 WHREML 73.2 78.8 85.7

WHPZ 46.6 53.6 66.7 WHPZ 33.4 39.8 51.2

AM-PW 71.7 77.6 86.9 AM-PW 62.7 70.3 79.5

NW-PW 71.1 76.9 86.5 NW-PW 62.2 69.9 79.0
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Table 4.2: Coverage Probabilities for AR(1) Processes: n = 200

�1 Method 90% 95% 99% �1 Method 90% 95% 99%

0.1

WHC 87.3 93.1 98.3

0.3

WHC 85.2 91.3 97.2

WHREML 87.8 93.3 98.3 WHREML 87.3 92.8 97.8

WHPZ 86.9 92.7 98.4 WHPZ 81.2 88.0 95.7

AM-PW 89.6 94.8 99.0 AM-PW 89.6 94.6 98.9

NW-PW 88.4 94.2 98.8 NW-PW 88.6 94.1 98.8

0.5

WHC 84.7 91.0 96.7

0.7

WHC 85.0 90.5 96.6

WHREML 87.9 93.1 97.7 WHREML 87.5 92.6 97.6

WHPZ 77.3 84.4 92.9 WHPZ 79.4 85.8 93.2

AM-PW 89.0 94.1 98.8 AM-PW 88.0 93.4 98.3

NW-PW 88.5 93.8 98.7 NW-PW 87.9 92.9 98.4

0.9

WHC 84.1 89.4 94.8

0.95

WHC 82.0 87.3 93.4

WHREML 85.6 90.8 95.7 WHREML 82.8 88.1 94.1

WHPZ 67.2 74.8 86.2 WHPZ 53.1 60.4 73.0

AM-PW 84.8 89.6 96.0 AM-PW 79.9 86.2 92.9

NW-PW 84.7 89.4 95.9 NW-PW 79.9 86.0 92.8
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4.2 Monte-Carlo Results

Table 4.3: AR(1) Processes Relative E�ciency

�1 Method n = 50 n = 200

0.1

WHC 0.66 0.12

AM-PW 1.00 1.00

NW-PW 0.52 0.26

0.3

WHC 0.57 0.14

AM-PW 1.00 1.00

NW-PW 0.74 0.46

0.5

WHC 0.57 0.29

AM-PW 1.00 1.00

NW-PW 0.89 0.80

0.7

WHC 0.65 0.42

AM-PW 1.00 1.00

NW-PW 0.94 0.78

0.9

WHC 0.99 0.97

AM-PW 1.00 1.00

NW-PW 0.98 0.96

0.95

WHC 1.00 1.00

AM-PW 0.90 0.91

NW-PW 0.89 0.90

Minimum

WHC 0.57 0.12

AM-PW 0.90 0.91

NW-PW 0.52 0.26
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4.2 Monte-Carlo Results

For the AR(1) process, the peak at zero frequency becomes sharper when the

AR(1) coe�cient �1 increases. In all the cases, the actual coverage probabilities are

smaller than the nominal coverage probabilities. When � = 0.1, 0.3, 0.5, 0.7, 0.9,

the method with relative e�ciency of 1 is AM-PW for both n = 50 and 200. For

�1 = 0.95, the method with relative e�ciency of 1 is WHC for both n = 50 and

n = 200.

For � = 0.1, 0.3, 0.5, 0.7, 0.9, the prewhitening-based method is superior be-

cause the order of the autoregressive prewhitening filter is the same as the order

of the autoregressive data-generating process. In other words, this is precisely

the process that AM-PW and NW-PW are built for. We see that even with

WHREML, where we restrict our choice of candidates to autoregressive models,

WHREML is still outperformed by AM-PW and NW-PW. One explanation to

that is WHREML does not always choose the true order (In this case, 1) espe-

cially in small samples. However, as we will see in subsection 4.2.5, the lack of

model selection in the prewhitening filter can lead to undesirable performance in

terms of coverage probability of µ.

The bandwidth selection procedure of AM-PW follows the proposal of An-

drews (1991) and works well when the prewhitened process has a monotonically

decreasing spectral density. The least-squares AR(1) estimator tends to yield an

AR(1) coe�cient that is biased downward. Therefore, the spectral density of

the prewhitened time series from using the least-squares AR(1) filter can still be

monotonically decreasing, which favors AM-PW.

Even though AM-PW and NW-PW are built for AR(1) processes due to AR(1)

filter application in both methods, they are still outperformed by WHC in the

case when � = 0.95 and by WHREML when � = 0.9 and 0.95. These simula-

tion results support the motivation behind the application of REML to estimate

autoregressive processes in the HAC problem. Hence, we suggest to use REML

whenever we are estimating an autoregressive model.

Finally, the gap between the observed coverage rate and the nominal coverage

rate of WHC has narrowed when n moves from 50 to 200.

33



4.2 Monte-Carlo Results

4.2.2 White Noise Process

Xt = "t "t
i.i.d⇠ N(0, 1)

Table 4.4: Coverage Probabilities for White Noise Process

n Method 90% 95% 99%

50

WHC 88.8 93.4 98.3

WHREML 88.9 93.5 98.3

WHPZ 89.7 94.5 98.8

AM-PW 88.1 93.1 97.9

NW-PW 85.5 90.9 96.4

200

WHC 89.5 94.6 99.0

WHREML 89.7 94.6 99.1

WHPZ 89.9 94.9 99.2

AM-PW 89.7 94.7 99.0

NW-PW 88.4 94.1 98.8

Table 4.5: White Noise Process Relative E�ciency

Method n = 50 n = 200

WHC 1.00 0.76

AM-PW 0.86 1.00

NW-PW 0.46 0.35

For the white noise process, the spectral density function is flat. For both n =

50 and 200, the actual coverage probabilities are smaller than the nominal coverage

probabilities. The methods with the highest relative e�ciency between WHC,

AM-PW, and NW-PW are WHC for n = 50 and AM-PW with a slight advantage

when n = 200 (Though based on Table 4.4, all methods provide satisfactory

performance when n = 200). For WHC, these results show the advantage of

the inclusion of nonparametric spectrum estimates as we see from the table that

WHPZ has better performance than WHREML. The only method that has
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4.2 Monte-Carlo Results

issue in this experiment is NW-PW. Its under-coverage of the confidence interval

is substantial when n = 50. Finally, the gap between the observed coverage rate

and the nominal coverage rate of WHC has narrowed when n moves from 50 to

200.

4.2.3 MA(1) Processes

Table 4.6: Coverage Probabilities for MA(1) Processes

n = 50 n = 200

 1 Method 90% 95% 99% 90% 95% 99%

-0.3

WHC 92.0 95.3 98.4 90.2 95.2 99.1

WHREML 92.4 95.5 98.3 90.2 95.2 99.0

WHPZ 95.2 97.7 99.5 96.0 98.3 99.8

AM-PW 92.2 95.9 99.1 93.1 97.0 99.7

NW-PW 86.0 90.9 96.4 89.4 94.5 98.9

-0.5

WHC 92.0 95.6 98.7 91.7 95.8 99.1

WHREML 91.9 95.4 98.6 91.7 95.8 99.1

WHPZ 97.2 98.7 99.7 97.0 98.5 99.8

AM-PW 96.6 98.5 99.7 97.7 99.4 100.0

NW-PW 84.7 89.7 95.3 89.4 94.5 98.6

-0.7

WHC 95.8 97.7 99.3 94.8 97.9 99.7

WHREML 95.7 97.7 99.3 95.0 98.0 99.7

WHPZ 99.2 99.8 100.0 98.4 99.4 100.0

AM-PW 99.5 99.9 100.0 100.0 100.0 100.0

NW-PW 85.5 91.0 95.4 87.5 92.4 96.6
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4.2 Monte-Carlo Results

Table 4.7: MA(1) Processes Relative E�ciency

 1 Method n = 50 n = 200

-0.3

WHC 1.00 1.00

AM-PW 0.31 0.08

NW-PW 0.05 0.23

-0.5

WHC 1.00 1.00

AM-PW 0.11 0.09

NW-PW 0.09 1.00

-0.7

WHC 1.00 1.00

AM-PW 0.20 0.00

NW-PW 0.64 0.99

Minimum

WHC 1.00 1.00

AM-PW 0.11 0.00

NW-PW 0.05 0.23

For all values of  1, the intervals based on WHC and AM-PW overcover µ

and those based on NW-PW undercover µ. When  1 = �0.3,�0.5,�0.7, WHC

has more reliable performance than AM-PW and NW-PW.

We take di↵erent values of the MA(1) coe�cient. When the MA(1) coe�cient

 1 approaches to -1, f(0) approaches 0. This provides an alternative way of doing

stress-testing for our method and traditional HAC methods, as we will have a

trough of spectral density at zero frequency when  1 is close to -1. Note that

when f(0) = 0, our assumption of short memory will no longer be true, and the

HAC standard error will not be consistent. When  1 = �0.7, AM-PW have a

coverage probability of 100% even for a 90% confidence interval when n = 200.

Finally, the gap between the observed and nominal coverage rates for WHC

is narrowed when n moves from 50 to 200 in all cases expect for  1 being close to

-1.
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4.2 Monte-Carlo Results

4.2.4 MA(2) and MA(3) Processes

Xt = "t + ↵"t�1 + �"t�q q 2 {2, 3} and "
i.i.d⇠ N(0, 1)

Table 4.8: Coverage Probabilities for MA(2) and MA(3) Processes: n = 50

↵ � q Method 90% 95% 99% q Method 90% 95% 99%

0.0 -0.3 2

WHC 93.2 96.6 99.0

3

WHC 95.7 97.7 99.4

WHREML 93.2 96.5 99.0 WHREML 95.8 97.7 99.4

WHPZ 96.7 98.7 99.8 WHPZ 97.6 99.2 99.9

AM-PW 97.2 99.0 99.8 AM-PW 96.9 98.8 99.8

NW-PW 86.1 90.3 95.5 NW-PW 95.3 97.8 99.6

-0.1 -0.3 2

WHC 94.0 96.9 99.2

3

WHC 96.8 98.2 99.4

WHREML 94.0 96.7 99.2 WHREML 96.5 98.1 99.4

WHPZ 97.8 99.2 99.9 WHPZ 99.0 99.7 99.9

AM-PW 98.2 99.4 99.9 AM-PW 98.7 99.6 99.9

NW-PW 86.0 90.5 95.9 NW-PW 96.4 98.4 99.7

0.0 0.3 2

WHC 83.3 89.4 95.6

3

WHC 82.3 89.1 95.3

WHREML 83.7 89.4 95.9 WHREML 82.8 89.6 95.6

WHPZ 83.4 89.7 96.1 WHPZ 81.5 88.6 95.6

AM-PW 78.5 85.6 93.7 AM-PW 78.8 86.0 93.8

NW-PW 81.7 87.6 95.0 NW-PW 77.4 84.4 92.3

0.1 0.3 2

WHC 82.2 88.5 95.3

3

WHC 81.2 87.6 94.2

WHREML 82.0 88.5 95.0 WHREML 81.5 87.7 94.4

WHPZ 82.0 88.7 95.4 WHPZ 80.2 87.2 94.3

AM-PW 80.0 86.7 94.3 AM-PW 76.8 84.2 92.4

NW-PW 82.8 88.3 95.2 NW-PW 76.2 83.4 92.0
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4.2 Monte-Carlo Results

Table 4.9: Coverage Probabilities for MA(2) and MA(3) Processes: n = 200

↵ � q Method 90% 95% 99% q Method 90% 95% 99%

0.0 -0.3 2

WHC 91.7 95.9 99.0

3

WHC 93.4 97.0 99.4

WHREML 91.7 95.8 99.0 WHREML 93.3 97.0 99.4

WHPZ 96.9 98.8 99.8 WHPZ 97.5 99.0 99.9

AM-PW 98.6 99.7 100.0 AM-PW 98.6 99.8 100.0

NW-PW 89.7 94.3 98.6 NW-PW 89.8 94.1 98.5

-0.1 -0.3 2

WHC 92.4 96.0 99.1

3

WHC 94.3 97.5 99.5

WHREML 92.2 96.1 99.1 WHREML 94.3 97.5 99.5

WHPZ 97.7 98.9 99.9 WHPZ 98.3 99.3 100.0

AM-PW 99.4 100.0 100.0 AM-PW 99.8 100.0 100.0

NW-PW 89.7 94.0 98.4 NW-PW 88.1 92.9 97.4

0.0 0.3 2

WHC 86.4 91.9 97.6

3

WHC 87.8 93.1 98.0

WHREML 86.7 92.0 97.5 WHREML 88.6 93.4 98.1

WHPZ 84.2 90.1 97.1 WHPZ 85.1 91.2 97.6

AM-PW 80.7 87.8 95.7 AM-PW 81.0 87.9 95.9

NW-PW 86.1 91.8 97.9 NW-PW 85.2 91.1 97.6

0.1 0.3 2

WHC 85.7 91.4 97.3

3

WHC 87.9 93.4 97.9

WHREML 86.4 91.6 97.4 WHREML 88.8 93.7 98.1

WHPZ 82.0 88.4 96.1 WHPZ 84.4 90.7 97.0

AM-PW 81.9 88.8 96.3 AM-PW 79.3 86.0 94.7

NW-PW 86.3 92.1 98.1 NW-PW 85.0 91.1 97.3
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4.2 Monte-Carlo Results

Table 4.10: MA(2) and MA(3) Processes Relative E�ciency

↵ � q Method n = 50 n = 200 q n = 50 n = 200

0.0 -0.3 2 WHC 1.00 1.00 3 1.00 0.64

AM-PW 0.26 0.07 0.56 0.10

NW-PW 0.29 0.74 0.95 1.00

-0.1 -0.3 2 WHC 1.00 1.00 3 1.00 1.00

AM-PW 0.23 0.05 0.42 0.15

NW-PW 0.37 0.58 0.91 0.98

0.0 0.3 2 WHC 1.00 1.00 3 1.00 1.00

AM-PW 0.70 0.52 0.75 0.35

NW-PW 0.82 0.97 0.67 0.56

0.1 0.3 2 WHC 1.00 0.85 3 1.00 1.00

AM-PW 0.84 0.57 0.77 0.26

NW-PW 0.97 1.00 0.74 0.47

Minimum

WHC 1.00 0.64

AM-PW 0.23 0.05

NW-PW 0.29 0.47
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4.2 Monte-Carlo Results

Den Haan and Levin (1997) suggest these generating mechanisms to com-

pare di↵erent HAC estimators’ robustness against various autocorrelation struc-

tures. The parameters are chosen such that the first-order autocorrelation for

the prewhitened time series is small, but the higher-order autocorrelations are

substantial. Compared with AM-PW and NW-PW, WHC is superior in most

situations and yields the best overall performance in this experiment. If the MA

coe�cient � is negative, then AM-PW tends to lead to substantial over-coverage

of µ , but NW-PW tends to under-cover µ. If the MA coe�cient � is positive, then

both AM-PW and NW-PW tend to substantially undercover µ. WHC generally

has better performance when � is negative and slightly better (though still with

substantial under-coverage) when � is negative. In particular, we can see from

the comparison between WHREML and WHPZ that WHREML has better

coverage performance even though our data-generating mechanism is not an au-

toregressive process.

A drawback of AM-PW here is that the bandwidth it uses is based on an AR(1)

model for the prewhitened data {êt}. As is pointed out by Den Haan and Levin

(1996), it is not true in general that the data-dependent bandwidth parameter

should solely depend on the first-order autocorrelation of the prewhitened data.

The bandwidth selection procedure of AM-PW follows the proposal of Andrews

(1991) and works well when the prewhitened process has a monotonically decreas-

ing spectral density (See Den Haan and Levin (1996)). Since this monotonicity

may not hold in practice, such a predetermined fitting of an AR(1) model to

{êt} may have drawbacks, as seen here. Note that WHC avoids the use of pilot

estimates as it is based on cross-validation. Overall, for the simulations in this

subsection, NW-PW outperforms AM-PW, but WHC is superior.

Finally, the gap between the observed coverage rate and the nominal coverage

rate of WHC narrows as n goes from 50 to 200.
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4.2 Monte-Carlo Results

4.2.5 AR(2) Processes

Xt =
1

2
�Xt�1 +

1

2
�Xt�2 + "t "

i.i.d⇠ N(0, 1)

Table 4.11: Coverage Probabilities for AR(2) Processes: n = 50

� Method 90% 95% 99% � Method 90% 95% 99%

0.3

WHC 80.3 87.5 94.2

0.5

WHC 75.8 82.5 90.5

WHREML 80.2 87.1 94.0 WHREML 76.4 82.8 90.6

WHPZ 79.4 87.1 94.4 WHPZ 72.5 80.2 89.9

AM-PW 81.1 87.2 94.7 AM-PW 74.0 81.3 90.0

NW-PW 81.2 87.4 94.7 NW-PW 75.9 83.1 91.5

0.7

WHC 71.4 77.7 86.8

0.9

WHC 65.5 71.4 80.2

WHREML 74.1 79.6 87.4 WHREML 68.3 74.4 82.5

WHPZ 61.9 70.3 81.9 WHPZ 38.8 44.9 57.5

AM-PW 62.5 70.6 82.3 AM-PW 42.0 48.8 60.5

NW-PW 66.9 74.0 85.1 NW-PW 45.8 53.0 65.1

Table 4.12: Coverage Probabilities for AR(2) Processes: n = 200

� Method 90% 95% 99% � Method 90% 95% 99%

0.3

WHC 84.6 90.7 96.8

0.5

WHC 84.4 90.5 96.2

WHREML 85.6 91.3 97.2 WHREML 85.7 91.2 96.7

WHPZ 80.4 87.2 95.3 WHPZ 77.4 84.0 92.3

AM-PW 83.1 89.7 96.8 AM-PW 77.5 84.5 93.3

NW-PW 85.5 91.5 97.7 NW-PW 82.7 89.1 96.3

0.7

WHC 84.5 89.8 95.8

0.9

WHC 83.4 88.4 93.4

WHREML 86.3 91.1 96.4 WHREML 84.3 89.2 94.4

WHPZ 77.4 83.9 92.8 WHPZ 59.6 67.6 79.0

AM-PW 69.2 77.9 87.9 AM-PW 53.5 61.3 73.2

NW-PW 77.0 83.8 92.8 NW-PW 58.8 66.3 77.9
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4.2 Monte-Carlo Results

Table 4.13: AR(2) Processes Relative E�ciency

� Method n = 50 n = 200

0.3

WHC 1.00 0.85

AM-PW 0.97 0.73

NW-PW 0.99 1.00

0.5

WHC 0.97 1.00

AM-PW 0.92 0.55

NW-PW 1.00 0.82

0.7

WHC 1.00 1.00

AM-PW 0.82 0.46

NW-PW 0.89 0.59

0.9

WHC 1.00 1.00

AM-PW 0.68 0.37

NW-PW 0.72 0.40

Minimum

WHC 0.97 0.85

AM-PW 0.68 0.37

NW-PW 0.72 0.40

This set of experiments was proposed by Den Haan and Levin (1997). The

overall best method in this experiment is WHC. The inclusion of parametric

autoregressive model candidates in FDCV is motivated by AR(1) prewhitening

in the HAC literature. The prewhitening filter that AM-PW and NW-PW con-

sidered is a fixed first-order filter, where our method allows for model selection

in choosing a parametric model. The advantage of such flexibility is not clear

in experiment 4.2.1, where the data-generating mechanism is an AR(1) which is

exactly the process that AM-PW and NW-PW are designed for. The value of the

autoregressive coe�cients is the same, taken to be 1
2�. When � increases, the time

series will have a root that is close to the unit circle, and the spectrum density will

be sharper. Notice that in all cases, the actual coverage probabilities are smaller

than the nominal coverage probabilities, which is similar to experiment 4.2.1. The
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4.2 Monte-Carlo Results

performance of WHC, AM-PW and NW-PW are similar when � = 0.3, 0.5 for

both n = 50 and 200. When � = 0.7 and 0.9, AM-PW and NW-PW are strongly

outperformed by WHC. This shows the advantage of flexibility in selecting the

parametric components for the HAC problem. The inclusion of an AR(2) model

candidate in class C is helpful for WHC in the current situation.

In addition, similarly to what we have seen in 4.2.1, when �1 = 0.95, the use

of REML to estimate the autoregressive model improves the performance when

the spectral density has a sharp peak (� = 0.9) in the simulation.

Finally, the gap between the observed coverage rate and the nominal coverage

rate of WHC narrows as n goes from 50 to 200.

4.2.6 Overall Evaluation

We have run simulations with 22 data-generating mechanisms with n = 50 and

200. In this subsection, we point out that WHC is the best performing method

in most of the 22 cases, and we also consider the worst-case performance for the

various methods.

The first table below shows that WHC is the method that achieves a relative

e�ciency of 1 (the best method) 16 times when n = 50 and 12 times when n = 200.

This is far greater than the number of times that AM-PW and NW-PW achieve

a relative e�ciency of 1.

Table 4.14: Number of Times a Method
Achieves Relative E�ciency of 1

Method n = 50 n = 200

WHC 16 12

AM-PW 5 6

NW-PW 1 4

From the boxplots below, we first notice that the interquartile range is much

smaller for WHC than AM-PW and NW-PW. Next, we investigate the worst-

case performance of each method. From the boxplots, we see that when n = 50,

WHC has the best worst-case performance. When n = 200, the worst case of
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4.2 Monte-Carlo Results

WHC gives a relative e�ciency lower than the worst case for NW-PW. However,

we should notice that the worst case of WHC occurs in the results of subsection

4.2.1 where the respective data-generating mechanism is AR(1), which is where

the AM-PW and NW-PW are designed to do well, due to AR(1) prewhitening.

Another observation from reading the table of coverage probabilities across

these 22 cases is that NW-PW has a tendency to undercover compared to WHC

and AM-PW.

In view of this discussion, we feel thatWHC has the most reliable performance

overall.
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Chapter 5

Conclusions

We apply a unified frequency domain cross-validation method to select an estimate

of the spectral density at zero frequency and study the performance of confidence

intervals for the mean based on the resulting HAC standard error. Unlike classical

HAC methods, our method does unified model/tuning parameter selection where

candidates cut across parametric and nonparametric estimators. In particular, we

propose to automatically select the model/tuning parameters from a class of C

consisting of REML-based autoregressive spectrum estimators of order 0 to 5 and

lag-weights spectrum estimators with Parzen kernel from truncation point 1 to

m(n).

We studied the performance of the confidence interval of our purposed data-

driven method compared to other popular plug-in-based approaches like Newey

and West (1994) and Andrews and Monahan (1992) in the case of the mean. We

found that our method is the best performing and the most reliable method in

simulation. More specifically, our method has superior performance when the

time series has an autoregressive root that is closed to the unit circle due to our

inclusion of the REML-based autoregressive estimators. Moreover, the inclusion

of autoregressive spectrum estimates can be advantageous even if our time series

is not an autoregressive process, such as a moving average process. Finally, our

method is reliable in the case of white noise where the spectral density is constant,

due to the inclusion of the nonparametric lag-weights estimators and better choice

of the bandwidth parameter.

For future work, we hope to improve the computational e�ciency of the REML

likelihood evaluation using the preconditioned conjugate gradient algorithm (PCG),
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as we will briefly describe in Appendix A. A faster algorithm for computing the

REML spectrum estimate will substantially improve the speed of our FDCV al-

gorithm for the HAC problem and make our method more user-friendly.

We might also consider tapering for the nonparametric estimators. This is

motivated by the simulation study where we found in most cases except for white

noise that even if the spectral density around zero is relatively flat, the FDCV

would still more frequently select a parametric estimator. Moreover, we generally

found that WHREML has better performance than WHPZ even if our process

is not autoregressive. Thus, we would like to improve the performance of the

nonparametric spectrum estimators. One related work of this topic on the HAC

problem is Smith (2005) who proposes using multitapering for the HAC standard

error estimation. However, his ideas have not yet been verified in simulation so far

as we are aware. In general, tapering the data will reduce the bias at the cost of

inflating the variance. However, if we try to apply the smoothing directly on the

non-tapered data, the bias will persist as smoothing only dampens the variance.

So, to apply a nonparametric estimator on non-tapered data is to smooth out

what has already been biased. We would find the tapers that can noticeably

reduce the bias without inflating too much of the variance and then applying the

nonparametric estimators on the tapered data.

Finally, HAC focuses on robust standard error estimation in a short memory

process. In most of the HAC literature, it is assume that the spectral density at

zero frequency is finite and positive. However, if our time series has f(0) being

infinite or zero (so that the time series has long memory or is anti-persistent),

then the HAC methods based on estimating f(0) are no longer consistent. Details

of such problems can be found in Robinson (2005) where an alternative MAC

(memory autocorrelation consistent) estimator is considered. We would hope to

investigate the possibility of the application of FDCV to the MAC problem.
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Appendix A

Restricted Maximum Likelihood
Estimation

There are many popular approaches to estimate an autoregressive model, including

Yule-Walker, Burg, least-squares (LS) and maximum likelihood (MLE). Consider

an AR(p) process

Xt =
pX

j=1

�jXt�j + "t "t
i.i.d⇠ N(0, �2)

Let �(z) = 1 �
P

p

j=1 �jzj be a polynomial of order p and z 2 C. A su�cient

condition for the existence of a stationary autoregression is that all the roots zj of

�(z) lie outside the unit circle (or |zj| > 1 and 1  j  p). Since HAC methods as-

sume that the time series in stationary, we impose this constraint in our estimates

of AR(p) models. Yule-Walker and Burg always generate a stationary solution

and Burg often has much better estimation performance than Yule-Walker. The

restricted likelihood function is not well-defined for non-stationary models, which

distinguishes it from the Yule-Walker and Burg methods. All methods described

above except for REML have been widely implemented in various statistical soft-

ware. REML is a method that has been widely applied in the literature of linear

mixed e↵ect models, but no package so far as we are aware has a version of REML

that constrains for stationarity. We next discuss REML estimation of AR(p) mod-

els with a stationarity constraint.
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A.1 The Restricted Likelihood for an Linear Regression Model

A.1 The Restricted Likelihood for an Linear Re-
gression Model

Consider a general linear regression model

y = X� + " " ⇠ N(0, H(�))

where y is an n-dimensional vector,X is a design matrix andH(�) is the covariance

matrix parametrized by �.

It is well-known that the covariance matrix estimator using MLE is biased.

This is related to the degrees of freedom lost in the estimation of the mean com-

ponents (�). If we estimate the covariance matrix with true �, the estimation

would be unbiased. The intuition behind REML is to maximize a modified likeli-

hood that is free of mean components.

Instead of computing likelihood L(�|y), we transform y such that the likelihood

estimation can bypass estimating � first and can thus produce unbiased estimates

for �. If vector a is orthogonal to all columns of design matrix X, i.e.,aTX = 0,

then aTy is known as an error contrast. We can find at most n�k such vectors that

are linearly independent. Define A = (a1, a2, ...an�k). It follows that ATX = 0

(by orthogonality construction) and E(ATy) = 0. Let A = InX(XTX)�1XT and

we will have AX = 0. The error contrast vector

w = ATy = AT (X� + ") = AT " ⇠ N(0, ATHA)

is free of �. In the case of original maximum likelihood, y ⇠ N(X�, H), which is

not free of �. Therefore, REML intends to maximize

Lw(�|ATy)

Harville (1974) derives the formula for L(✓|ATy)

L(✓|ATy) = �1

2
(n� k)log(2⇡) +

1

2
log|XTX|� 1

2
log|H|

� 1

2
log|XTH�1X|� 1

2
(y �X�̂)TH�1(y �X�̂)

where �̂ = (XTH�1X)�1XTH�1y

Once H(✓) is obtained from REML, � can be estimated using generalized least
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squares and is just

�̂ = (XTH�1X)�1XTH�1y

A.2 The Restricted Likelihood for an Autore-
gressive Model

The autoregressive model of order p is a particular case of the model described

above. Our design matrix X is simply a vector of 1’s, and we specify our error

structure to be AR(p).

By Chen and Deo (2012), using the Harville (1974) formula, up to an additive

constant, based on X = (x1, ..., xn)T , the restricted log-likelihood is given by

L(X,�, �2) = �n� 1

2
log�2 +

1

2
log

|⌃�1(�)|
|W T⌃�1(�)W |

� 1

2�2
{XT⌃�1(�)X �XT⌃�1(�)W (W T⌃�1(�)W )�1W T⌃�1(�)W}

where � = (�1, ...,�p)T , W = (1, ..., 1)T and ⌃(�) = �2V ar(X)

In particular,

⌃(�) = �2

2

6666664

c0 c1 c2 ... cn�2 cn�1

c1 c0 c1 ... cn�3 cn�2

... ... ... ... ... ...

cn�1 cn�2 ... ... c1 c0

3

7777775

is a Toeplitz matrix.

A.2.1 Computation

The terms in the restricted likelihood that are computationally expensive are

|⌃�1(�)|, W T⌃�1(�)W and XT⌃�1(�)X. Notice that inverting a matrix without

assuming any structure will cost O(n3) operations. We investigate ways to de-

crease the computational cost.

Method 1

This method is based on Chen and Deo (2012) proposal of a stable formula

for computing the restricted likelihood. By Barndor↵-Nielsen and Schou (1973),

|
P�1(�)| = ⇧p

i=1(1��2
ii
)i and the quadratic terms XT⌃�1(�)W , XT⌃�1(�)X and

W T⌃�1(�)W can be computed using the result of R. Galbraith and J. Galbraith
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(1974) that

uT⌃�1(�)w =
pX

r=1

pX

s=1

urwsmrs +
nX

t=p+1

⇣
ut �

pX

i=1

�iut�i

⌘⇣
wt �

pX

i=1

�iwt�i

⌘

where u and w are any n-dimensional column vectors,

mrs =
P

r�1
j=0 �j�j+s�r �

P
p+r�s

j=p+1�s
�j�j+s�r, 1  r  s  p

and mrs = msr

Method 2

An alternative and computationally less costly way is to use the preconditioned

conjugate gradient algorithm (PCG) which can speed up the evaluations of the

restricted maximum likelihood by solving the Toeplitz system Ax = b (See Lu and

Hurvich (2005) and Chen, Hurvich, et al. (2006). We can replace the parts of the

Restricted likelihood that contain the product of the inverse of a Toeplitz matrix

and a known column by the solution to the system Ax = b. The solution is just

x = A�1b. In our case, the A is ⌃ and b can be either W or X.

A.2.2 Constraint for Stationarity

We wish to restrict our search region to the parameter space that will produce a

stationary solution. One way to do this is to optimize the restricted likelihood

function with respect to the partial correlations.

To constrain for stationarity, we can use the Durbin-Levinson recursion to ex-

press the autoregressive parameters � = (�1, ..,�p)T (stationary) using the partial

autocorrelation function (PACF) ⇢ = (�11,�22, ...,�pp) and perform the optimiza-

tion of the REML likelihood for ⇢ 2 (�1, 1)p. (One can also utilize the Logit

transform such that the transformed PACF will be in (�1,1)p). We take the

starting value for REML estimation to be the Burg estimator as it yields a sta-

tionary solution. We perform our optimization based on the following steps:

Step 1: Compute the Autoregressive Burg estimate �̂Burg = (�̂Burg

1 , .., �̂Burg

p
)T

and �̂2

Step 2: Transform the Burg estimate �̂Burg to PACF ⇢ 2 (�1, 1)p by first setting

(�p1, ...,�pp) = �̂Burg
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and apply recursion

�h�1,i = �h,i + �h,h�h�1,h�i i = 1, .., h� 1

for h = 2, ..., p. This recursion follows directly from the transposition of the terms

in the Durbin-Levinson recursion. The pacf transformed from the initial Burg

autoregressive estimate is

⇢Burg = (�11,�22, ...,�pp)
T

Note that �̂Burg and �̂2 is the starting value of our restricted likelihood based on

PACF.

Step 3: Do the searching for ⇢ 2 (�1, 1)p and �2 > 0 and obtain the ⇢⇤ and (�2)⇤

that maximizes the restricted log likelihood.

Step 4: Apply Durbin-Levinson Recursion so that we can transform the PACF

to �.

�h,i = �h�1,i � �h,h�h�1,h�i i = 1, 2, ..., h� 1

This will be our REML estimate that constrained for stationarity.
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