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Abstract We study the random field Ising model on Z? where the external
field is given by i.i.d. Gaussian variables with mean zero and positive variance.
We show that the effect of boundary conditions on the magnetization in a finite
box decays exponentially in the distance to the boundary.

1 Introduction

Forv € Z2, let h, bei.i.d. Gaussian variables with mean zero and variance e >

0. We consider the random field Ising model (RFIM) with external field {A, :
v € 72} at temperature T = 1/ € [0,00). For N > 1,let Ay = {v € Z? :
|v|so < N} be a box in Z? centered at the origin o and of side length 2N. For
any set A C Z?, define dA={v € Z*\ A:u ~ v for some u € A} (whereu ~ v
if [u — v|; = 1). The RFIM Hamiltonian H”¥-* on the configuration space
{—1, 1}~ with plus (respectively, minus) boundary condition and external
field {h, : v € Ay} is defined to be
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HWEo)y=—=( Y owovt Y. out Y ouhy) (1)

u~v,u, Ve u~v,ueEAN,vEIAN uelAy

for o € {—1, 1}~ . (In the preceding summation, each unordered pair u ~ v
only appears once.) Quenched on the external field {#, }, the Ising measure with
plus boundary condition (respectively minus boundary condition) is defined
such that forall o € {—1, 1}*¥ (throughout the paper the temperature is fixed,
and thus we suppress the dependence on g in all notations)

—BHN*(0)
e R ’
= (o) = , where ZAVE = Z e PHNF(@),

o'e{—1,1}AN

ZAN,:I:
2)

Note that ©¥-* is a random measure which itself depends on {/,}. To be
clear of the two different sources of randomness, we use [P and E to refer to the
probability measure with respect to the external field {/,}; and we use uV-*
for the Ising measures and use (-) 4.+ to denote the expectations with respect
to the Ising measures.

m

Theorem 1.1 Forany e > 0, T € [0, 00), there exists c = c(e, T) > 0 such
that

E((00) yan+ = (00) yan.—) < cle™N  forall N > 1.

This result lies under the umbrella of the general Imry—Ma [17] phe-
nomenon, which states that in two-dimensional systems any first order
transition is rounded off upon the introduction of arbitrarily weak static, or
quenched, disorder in the parameter conjugate to the corresponding extensive
quantity. In the particular case of the RFIM, it was shown in [4,5] that the
effect of the boundary conditions on magnetization at distance N decays to 0
as N — oo for all non-negative temperatures and arbitrarily weak quenched
disorder (this also implies the uniqueness of the Gibbs state). The decay rate
was then improved to 1/4/loglog N in [10] and to 1/N? (for some y > 0)
in [3]. In the presence of strong disorder it has been shown that there is an
exponential decay [6,9,14] (see also [3, Appendix A]). The main remaining
challenge is to decide whether the decay rate is exponential when the disorder
is weak. In fact, there have been debates even among physicists as to whether
there exists a regime where the decay rate is polynomial, and weak supporting
arguments have been made in both directions [7,12,15]—in particular in [12]
an argument was made for polynomial decay at zero temperature for a certain
choice of disorder. Theorem 1.1 provides a complete answer to this question
when the random field consists of i.i.d. Gaussian variables.
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Exponential decay of correlations in the two-dimensional... 1001

The two-dimensional behavior of the RFIM is drastically different from that
for dimensions three and higher: it was shown in [16] that at zero temperature
the effect on the local quenched magnetization of the boundary conditions at
distance N does not vanish in N in the presence of weak disorder, and later an
analogous result was proved in [8] at low temperatures. A heuristic explanation
behind the different behaviors is as follows: in d dimensions the fluctuation of
the random field in a box of side length N is of order N%/2, whereas boundary
condition effect is of order N9~ ! (thus, in two dimensions the fluctuation of the
random field in a box is of the same order as the size of the boundary, while in
three dimensions and above the fluctuation of the random field is substantially
smaller than the size of the boundary).

Our proof method is different from all of [3,5,10] (and different from [6,
9,14]), except that in the heuristic level our proof seems to be related to the
Mandelbrot percolation analogy presented in [3, Appendix B]. The works [4,5]
treated a wide class of distributions for disorder, while [3,10] and this paper
work with Gaussian disorder. The main features of Gaussian distributions used
in this paper are the simple formula for the change of measure [see (14)] and
linear decompositions for Gaussian process [see (23)]. In addition, we remark
that the analysis in [3,5] extends to the case with finite-range interactions.
While we expect our framework to be useful in analyzing the finite-range
case, the lack of planar duality seems to present some non-trivial obstacle (see
Remark 2.3).

The rest of the paper consists of two sections. In Sect. 2, we prove The-
orem 1.1 in the special case of 7 = 0. In our opinion, this is a significant
simplification of the general case but still captures the core challenge of the
problem. We hope that some of the key ideas (e.g., the crucial application of
[1]) can be more transparent by first presenting the proof in this simplified
case. In Sect. 3, we then present the proof for the case of 7 > 0. While the
proof naturally shares the key insights with the case for T = 0, it seems to
us that there are significant additional obstacles. As a result, the proof is not
presented as an extension of the zero-temperature case. Instead, we present an
almost self-contained proof, but omit details at times when they are merely
adaption of arguments in Sect. 2.

Our (shared) notations in Sects. 2 and 3 are consistent with each other, and
a few notations in Sect. 3 are natural extensions of those in Sect. 2. However,
for clarity of exposition, we will recall or re-explain all notations in Sect. 3.
Concurrent work During the submission of this paper, a paper [2] which proved
the same result was completed. The proof of [2] was inspired by the proof at
zero temperature in this paper (for the crucial application of [1]). Both proofs
share the basic intuition of “using the fluctuation of the sum of the random
field in a box to fight the influence of the boundary condition” (which went
back to [4,5]) and both apply [1] to disagreement percolation in a crucial
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1002 J. Ding, J. Xia

manner. However, the two approaches seem to be rather different in at least the
following two important aspects: (1) This paper employs first moment analysis
via various perturbations of the random field, and the paper [2] (similar to [3])
relies on concentration/anti-concentration type of analysis (which in particular
uses second-moment computations); (2) At positive temperatures, this paper
employs a certain monotone coupling (adaptive admissible coupling as in
Definition 3.9) between Ising measures with different boundary conditions,
and the paper [2] considers a continuous extension of the Ising model into
the metric graph which allows to study spin correlations via disagreement
percolation for two independent samples (inspired by [18,19]).

2 Exponential decay at zero temperature

At zero temperature, *V-* (and respectively u*¥-7) is supported on the
minimizer of (1), which is known as the ground state and is unique with
probability 1. We denote by o*¥-F the ground state with respect to the plus-
boundary condition and by o*¥-~ the ground state with respect to the minus-
boundary condition. Therefore, for T = 0 we have the simplification that the
only randomness is from the P-measure. Thus, Theorem 1.1 for 7 = 0 can
then be simplified as follows.

Theorem 2.1 For any ¢ > 0, there exists ¢ = c(¢) > 0 such that
Pot £ 02Ty < emleN forall N > 1.

2.1 Outline of the proof

We first reformulate Theorem 2.1. For v € Ay, we define

+ lfo_vANw‘f' — O_If\N,_ — 1’
g =1~ ifoy Nt =0T = 1, 3)
0 ifa,)AN’Jrzlanda,f\N’_:—l.

By monotonicity (c.f. [3, Section 2.2]), the case of oM T =l and 62V =1
cannot occur, SO Elf\ ¥ is well-defined for all v € Apy. Theorem 2.1 can be
restated as

my < cle™N for ¢= c(¢) >0, where my = ]P’(";‘OAN =0). 4

For any A C Z?, we can analogously define &4 by replacing Ay with A in
(1) and (3). Let CA = {v € A : €} = 0} (that is, C* is the collection of
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Exponential decay of correlations in the two-dimensional... 1003

disagreements). Monotonicity (see [3, (2.7)]) implies that
8N B’ c ¥ provided that B’ C B. 5)

In particular, this implies that m y is decreasing in NV, so we need only consider
N =2"forn > 1. Clearly, for any v € C*, there exists a path in C* joining v
and d A. This suggests consideration of percolation properties of C4. Indeed, a
key step in our proof for (4) is the following proposition on the lower bound on
the length exponent for geodesics (i.e., shortest paths) in CA¥ . Forany A C Z2,
we denote by d4 (-, -) the intrinsic distance on A, i.e., the graph distance on the
induced subgraph on A. Let d4 (A1, A2) = minyea,;na,yeana da(x, y) (with
the convention that min @ = o0).

Proposition 2.2 There exist @ = a(e) > 1, k = k() > 0 such that for all
N> 1

P(doay (DAN/4, dAN/2) < N*) < i le™ (6)

Remark 2.3 The “only” place where our proof breaks in extending to the finite
range case is to verify Proposition 2.2 (and its analogue at positive temper-
atures, Proposition 3.1). The exact points where the extension of the proof
encounters issues depend somewhat on exact formulations for sub-lemmas.
For instance, at zero temperature one can try to prove a version of Lemma 2.8
sticking to nearest neighbor crossings, then for lack of planar duality there are
issues both in the Proof of Lemma 2.8 (more specifically in Case 1) and in the
Proof of (8) which applies Lemma 2.8. Of course one can also try to prove a
stronger version of Lemma 2.8 (which suffices to prove (8)), but this may be
hard.

The Proof of Proposition 2.2 will rely on [1], which takes the next lemma
as input. For any rectangle A C R? (whose sides are not necessarily parallel
to the axes), let £4 be the length of the longer side and let AX2¢ be (the lattice
points of) the square box concentric with A, of side length 32¢ 4 and with sides
parallel to axes. In addition, define the aspect ratio of A to be the ratio between
the lengths of the longer and shorter sides. For a (random) set C C Z?, we use
Cross(A, C) to denote the event that there exists a path vg, ..., v, € ANC
connecting the two shorter sides of A (that is, v, vy are of £,-distances less
than 1 respectively from the two shorter sides of A).

Lemma 2.4 Write a = 100. There exists Lo = £o(e) and § = §(¢) > 0 such
that the following holds for any N > 1. For any k > 1 and any rectangles
Al,...,Ar C {v € R? . |[Vloo < N/2} with aspect ratios at least a such

that (a) Lo < €a, < N/32 forall 1 <i < kand (b) All‘arge, o Akarge are
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1004 J. Ding, J. Xia

disjoint, we have
IP’(ﬂLlCross(Ai, CAVY) < (1 — 8K

(Actually, the authors of [1] treated random curves in R2. However, the
main capacity analysis can be copied in the discrete case, and the connection
between the capacity and the box-counting dimension is straightforward (c.f.
[11, Lemma 2.3]).) Armed with Lemma 2.4, we can apply [1, Theorem 1.3]
to deduce that for some o = a(g) > 1,

P(doay (0AN/4, 0AN 2) < N% -0 as N — oo. (7)

By a standard percolation argument (Lemma 2.10) which we will explain later,
we can enhance the probability decay in (7) and prove (6).

By (5), the random set C*V¥ N A is stochastically dominated by cA™ M A
Large

as long as AM¥2¢ < A . Moreover, it is obvious that A for 1 <i <

k are mutually independent, as long as the sets A{farge for 1 < i < k are

disjoint. Therefore, in order to prove Lemma 2.4, it suffices to show that for
any rectangle A with aspect ratio at least a = 100 we have

P(Cross(A,CA™ ) <1 -8 where 8=28(¢) > 0. (8)

Both the Proof of (8) and the application of (6) rely on a perturbative
analysis, which is another key feature of our proof. Roughly speaking, the
logic is as follows:

e We first consider the perturbation by increasing the field by an amount of
order 1/N, and use this to show that the probability for a O-valued contour
surrounding an annulus is strictly bounded away from 1.

e Based on this property, we prove (8), which then implies (6).

e Given (6), we then show that increasing the field by an amount of order
1/N¥ (recall that « > 1 is from Proposition 2.2 and thus the perturbation
here is 1/N% « 1/N) will most likely change the O’s to +’s. Based on
this, we prove polynomial decay for m with large power, which can then
be enhanced to exponential decay.

For compactness of exposition, the actual implementation will differ slightly
from the above plan:

e We first prove a general perturbation result (Lemma 2.5) in Sect. 2.2, where
the size of perturbation is related to the intrinsic distance on C¥.

e In Sect. 2.3, we apply Lemma 2.5 by bounding d,a, from below by the
£1-distance and correspondingly setting the perturbation amount to 1/N,
thereby proving Lemma 2.8. As a consequence, we verify (8).
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Exponential decay of correlations in the two-dimensional... 1005

e In Sect. 2.4, we apply Lemma 2.5 again by applying a lower bound on
dpny from Proposition 2.2. This allows us to derive Lemma 2.11. As a
consequence, we prove in Lemma 2.14 polynomial decay for mpy with
large power, which is then enhanced to exponential decay by a standard
argument.

2.2 A perturbative analysis

We first introduce some notation. For A C Z2, we set hy = Y vea hy. For
A, B C 77, we denote by E(A,B) = {(u,v) : u ~ v,u € A,v € B}.
Note that we treat (u#, v) as an ordered edge. For simplicity, we will only
consider N = 2" for n > 10. Let Ay = Ay \ A2 be an annulus. Define

{il]()N) : v € An} to be a perturbation of the original field parameterized by
A > 0, as follows:

AN =h, + A forve Ay. )

We will use I:IAN’i(J), GANE .§AN, CAV to denote the corresponding tilde
versions of HAN’i(a), o ANE .SEAN, CAN respectively, i.e., defined anal-
ogously but with respect to the field {fzf,N)}. In addition, define Cﬁ N =
CAN N CAV (so Ci\ N is the intersection of disagreements with respect to the
original and the perturbed field; in informal discussions we will refer to vertices
in Cﬁ N as disagreements too).

Lemma 2.5 Consider K, A > 0. Define {ﬁf)N) v € Ay} asin (9). The
following two conditions cannot hold simultaneously:

@) doay (OAN/4, 0ANp2) > K
®) [CM N Anjal-A > S1CY 0 Ay,

Proof Suppose otherwise both (a) and (b) hold. Let By = {v € Anp :
dCAN (0An/a,v) =k} fork =1,..., K. Note that By C Cﬁ” N Ap 2 for all
1 < k < K by (a). Itis obvious that the By’s are disjoint from each other, and
thus there exists a minimal value k, such that

|Br,] < K~HCM N Ay al. (10)
Let

S = (CﬁN N Ay U UiLIIBk,
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1006 J. Ding, J. Xia

and for T € {—, 0, +}, define

2(S,7) = {{(u,v) € E(S, 8 : 2 =1} and
2(8,7) = {(u,v) € E(S, 8% : EMV = 1) (11)

Note that for any v € Ay with g,f‘N — 0 we have 0¥ = 1. Since "g‘lf\N =0
for v € § (which implies that alf\N’Jr =1forv e S),

hs +18(S, H)I —18(S, - +18(S. 0)[ = 0, (12)

because if (12) does not hold, then HA¥t(¢") < HAN-tT(g2N1) where
o’ is obtained from o*¥-* by flipping its value on S, thus contradicting the
minimality of HV-*(¢A¥-%). In addition, by monotonicity (with respect to
the external field), we have g(S, 0) C g(S,0)Ug(S, +), g(S,+) C g(S, +),
and thus

18(S, P —18(S, H)I = 1g(S,0)\ g(S, 0)].

Similarly, we have g(S, —) C g(S, —) and g(S,0) C g(S, —) U g(S,0), and
thus

18(S, ) —18(S, ) = 18(S,0) \ g(S, 0)].

By our definition of By’s, we see that g(S, 0) N g(S,0) = E(S, Bx,). There-
fore, (12) and the preceding two displays imply that

e +12(S. D) — 13(S. )| — 13(S. 0)]

> 7"+ 1g(S, )| — 1g(S, =) + 1g(S, 0)] — 2|E(S, By,)|
> |S|A — 8|By,| > 0,

where the last inequality follows from (b) and (10). The preceding inequality
implies HAV-~(0’) < HAN-= (6%~ where ¢ is obtained from 6¥-~ by
flipping its value on S. This contradicts the minimality of HAN-~(54N-7),
completing the proof of the lemma. O

Lemma 2.6 For any x, > 0 for v € Ay, let fng) = hy + xy for v €
AN (we will use I—VIAN’i(G), GANE éAN, CAN to denote the corresponding”
versions of HMF (o), o M-% gAN CAN). Then with probability 1, for any
v e CAV NCAN there is a path in C*V N CAN joining v and d A y.

Proof The proof is similar to that of Lemma 2.5, and in a way it is the case of
K = oo there.
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Exponential decay of correlations in the two-dimensional... 1007

Suppose that the claim is not true. Then take v € CAV N CAN (for which
the claim fails), and let S be the connected component in CAN N CAN that
contains v (thus S is not neighboring d A ). Define g(S, t) as in (11) and
define g(S, 1) = {(u,v) € E(S, §°) : Vlf\N = 1} . Similar to (12), we have
that

hs +18(S, H)I —18(S, - +18(S,0) = 0.

In our case, g(S,0) U g(S,+) C (S, +) and g(S,0) U g(S, —) C g(S, —).
Therefore,

R 188, )1 = 12(S, =) — 12(S, 0)]
> hg+ 1g(S. +)| — (S, =) + 1g(S. 0)| = 0.

The preceding inequality implies that H™=(¢") < HM-=(52¥~) where
o’ is obtained from &4~ by flipping its value on S. This happens with
probability O since the ground state is unique with probability 1. O

2.3 Proof of Proposition 2.2

In this section, we will set K = K(N) = N/4,and A = A(N) = y/N for an
absolute constant ¥ > 0 to be selected, and we consider h™) as in (9). In this
case Condition (a) in Lemma 2.5 holds trivially. For convenience, we use Py
to denote the probability measure with respect to the field {#, : v € Ax} and

use Py to denote the probability measure with respect to {fzf,N) tv e Ay}

Lemma 2.7 Recall that ¢ is the variance parameter for the field {h,}. For
any p > 0, there exists ¢ = c(e, p,y) > 0 such that for any event Ey with
Py (EN) = p, we have that

Py(EN) = c.

Proof There exists a constant C > 0 such that IF’N(WE\AQ — A|AN|| = CeN)
< p/2. Thus we have

Py (En; RS — AJANI| < CeN) > p/2. (13)

Also, by a straightforward Gaussian computation, we see that

PN _ il A(hy) — AlAND =81y
=~ - p 2 p 2 2
dPy & &

} (14)
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and thus there exists ¢ = t(¢) > 0 such that

dP -
Y > provided that |2} — A|Ay|| < CeN.
dPy N
Combined with (13), this completes the proof of the lemma. O

For any annulus .4, we denote by Crosshard(A, C) the event that there is
a contour in C which separates the inner and outer boundaries of .4, and by
Crosseasy (A, C) the event that there is a path in C which connects the inner and
outer boundaries of A.

Lemma 2.8 There exists § = §(¢) > 0 such that

min{P(Crosshara (An/s \ Any32, CV)), P(Crosseasy (Anss \ An 32, C2V)))
<1—-6 forall N > 32.

Proof We first provide a brief discussion on the outline of the proof. We refer
to the disagreements on A y /3, with plus/minus boundary conditions posed on
dA /g as the “enhanced” disagreements (the word enhanced is chosen since
the enhanced disagreements stochastically dominate the disagreements with
boundary conditions on d A y by monotonicity of the Ising model). Note that
the set of disagreements in Ay /> is stochastically dominated by the union of a
constant number of copies of enhanced disagreements, which are independent
of the enhanced disagreements in A y /3. Therefore, with positive probability
the number of enhanced disagreements in A y 37 is larger than (up to a constant
factor) the number of disagreements in Ay /> (see (16)). On this event, (modulo
a caveat) by Lemma 2.5 at least one of the enhanced disagreements is not a
disagreement when considering boundary conditions on d Ay — this yields
the desired statement as incorporated in Case 1 below. In Case 2, we tighten
the argument by addressing the caveat which is the scenario that the enhanced
disagreement is empty (this is relatively simple).

We are now ready to carry out the formal proof. We can write Ay, =
U:_, A; where each A; is a box of side length N /16 (so a copy of Ay/32) and
r > 16 is a fixed integer (while it is conventional to choose A;’s as disjoint
boxes, the disjointness is not used in the proof). For a box A, denoting by ABig
as the concentric box of A whose side length is 4¢ 4. We have that (see Fig. 1)

ATEN AN =90 and AP C Ay foralll <i<r (15)

For any A C Ay, let C* be defined as C* but replacing {h, : v € A} by

{ﬁng) - v € A} (note that CAV/2 is different from CAV/2, which is defined
- - Big

with respect to hN/2Y. Write Cg‘ = CANCA. Write X; = |C;4’ N A;| and
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Exponential decay of correlations in the two-dimensional... 1009

— 0Dy

e |0AN/8

,,,,,,, E - A2 E -

Fig. 1 Illustration for the geometric setup of the proof for Lemma 2.7. In the picture on the
left we cover Ay 2 by a collection of translated copies of Ay 32 (the grey boxes) — we only
draw out a few copies for an illustration. Note that the (4-times) enlargements of translated
copies (while overlapping among themselves) are all disjoint with A /8. The picture on the

. . . A . .
right illustrates the scenario in Case 1: for some v € C,, N7 \CAN | we draw its component with

the same &V -value and this component necessarily goes out of Ay /g

X = |Cé\ NN A ny32]. Clearly, X;’s and X are identically distributed and by
(15) X;’s are independent of X (but X;’s are not mutually independent). Let
0 =inf{x : P(X <x) > 1—1/2r}. Thus,

P(X > max X;, X >0) >P(X > 60)P(max X; <0) > 1/4r. (16)
1<i<r 1<i<r

The rest of the proof divides into two cases.

Case 1: 0 > 0. Let £ = {|Co"* N Anyzal = r1|CMY N Ay o]} N {ICEYE 0
Any32| > 0}. By (5) and (15), we have [C2Y N Ay 2] < Y7, X;. Combined
with (16), it gives that P(E) > 1/4r. Setting y = 100r, we get that |Co/* 0
Anj32l|-A > 16K ! |C£N NAn /2l onE. By Lemma 2.5, on £ there is at least

one vertex v € CQN/B N Ayyz2 butv ¢ Ci\"’. So either v ¢ CAN or v ¢ CAV
on £. Assume that v ¢ CV and the other case can be treated similarly.

We will use the following property: for any connected set A, u ¢ CA if and
only if there exists a connected set A C A with u € A such that £} = + for
allw € Aor $£ = —forall w € A. The “if” direction of the property follows
from (5). For the “only if” direction, we assume without loss that Sf =+
and let A be the connected component containing u where the £“*-value is +.
Note Gu"j"_ = —1forall w € JA and au“fl*_ = 1 for all w € A. This implies
that £4 = + forall w € A.

By the preceding property, there exists a connected set A C Ay withv € A
such that 55} = + forallw € A or 5;} = — for all w € A (see Fig. 1 for
an illustration). In addition, A cannot be contained in Ay g since otherwise
it contradicts v € CAN/3. By planar duality, this implies that on &, either
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1010 J. Ding, J. Xia

Crosshard (An/g \ Any32, CANY or Crosshard (Anys \ Any32, éAN) does not
occur (the second case corresponds to the case when v ¢ CAN). Therefore,

P((Crosshard (An /s \ Any32, CV))6)
+P((Crosshard (Anys \ Any32, CAV))) = P(E) > 1/4r.

Combined with Lemma 2.7, this completes the proof of the lemma.

Case 2: 0 = 0. Applying a simple union bound (by using 16 copies of A y 3 to
cover A /g, and a derivation similar to |C,,f\N NAns2| < Y i1 Xi) we get that
IP’(C;\N NApnsg =) = 1/2. We assume without loss that P(Crosseasy (An /s \
Any32,C ANY) > 3/4 (otherwise there is nothing further to prove), and thus

P(Crosseasy (An/s \ Any32, CAN) and C;\N NAyig=90)=>1/4.

On the event Crosseasy (An/s \ An/32, CAVY and C,,f\N N An/g = 0, the easy
crossing (joining two boundaries of Ay g \ An/32) in CAN becomes an easy
crossing with £ ¥ -values +. Thus, by planar duahty, it prevents existence of
a contour surrounding A /32 in (A \ Any32) N CAN . Therefore,

P((Crosshard (Anys \ Anyzz, CAV))6) > 1/4.
Combined with Lemma 2.7, this completes the proof of the lemma. |

Proof of (8) Let N = min{2" : 2"*t2 > ¢£4}. By our assumption on A, it is
clear that we can position four copies A, A», A3, A4 of A by translation or
rotation by 90 degrees so that (see the left of Fig. 2)

o A, Ay, A3, Ay C Ay \ Any3.

e The union of any crossings through Ay, Az, A3, A4 in their longer direc-
tions surrounds Ay /32.

o Ay C AF™® forl1 <i <4

Set p = P(Cross(A, CALarge)) (note that p depends on the dimension of A
and also the orientation of A). By rotation symmetry and (5) we see that

P(Cross(A;, CAV)) > P(Cross(A;, CA )) = p. In what follows, we denote
A = Anyg \ Any32. Then, by P(Cross(A;, CAN)) > p and a simple union
bound, we get that

P(Crosshara (A, CAV)) > ]P’(ﬂ4 lCross(A,,CA"’)) 1—-4(1—=p). (A7

Similarly, we can arrange two copies A,, Ap of A obtained by translation and

rotation by 90 degrees such that Ay C ALarge A];arge and that the union of
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any two crossings through Algarge, A]l;arge in the longer direction connects the

two boundaries of A (see the right of Fig. 2). This implies that

P(Crosseasy (A, CANY)
> P(Cross(Ag, CM) N Cross(Ap, C2V) > 1—2(1 — p).  (18)

Combined with (17) and Lemma 2.8, it yields that p < 1 — § for some
8 = &(e) > 0 as required. O

The following standard lemma will be applied several times below. Before
presenting the lemma, we first provide a definition.

Definition 2.9 Divide A y into disjoint boxes of side lengths N’ < N where
N’ = 2" for some n’ > 1, and denote by B(N, N’) the collection of such
boxes. Consider a percolation process on B(N, N'), where each box B €
B(N, N') is regarded open or closed randomly. For C, p > 0, we say that
the percolation process satisfies the (N, N’, C, p)-condition if for each B €
B(N, N’), there exists an event E such that

e On E}, B is closed.

e P(Ep) < p foreach B.

o If minyep, yep; [x — yloo = CN' forall 1 <i < j < k, then the events
Ep,, ..., Ep, are mutually independent.

Furthermore, we say two boxes By, By are adjacent if miny,cp, x,eB, X1 —
X2l < 1, and we say a collection of boxes is a lattice animal if these boxes
form a connected graph.

Lemma 2.10 For any C > 0, there exists p > 0 such that for all N
and N < N and any percolation process on B(N, N', C, p) satisfying the
(N, N’, C, p)-condition, we have

P(there exists a lattice animal of open boxes on B(N, N')
of size at least k) < (%)22_1‘.

Proof On the one hand, the number of lattice animals of size exactly k is
bounded by (%)282]‘ (the bound comes from first choosing a starting box,
and then encoding the lattice animal by a surrounding contour on B(N, N')
of length 2k). On the other hand, for any k such boxes, we can extract a sub-
collection of ck boxes (here ¢ > 0 is a constant that depends only on C)
such that the pairwise distances of boxes in this sub-collection are at least
C N’; hence the probability that all these k boxes are open is at most p¥. The
proof of the lemma is then completed by a simple union bound, employing the
(N, N’, C, p)-condition. O
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N
e

Fig. 2 On both left and right, the three concentric square boxes are Ay, Ayyg and Ay /32
respectively. On the left, the four rectangles are A, A>, A3, A4 and on the right the two rect-
angles are A4, Ap

Proof of Proposition 2.2 Let N' = Nl_(al;ol/\%), where « is as in (7). For
each B € B(N, N'), we say B is open if d parec (0B, d B'aee) < (N')®, where
B'2€¢ i the box concentric with B of doubled side length and BY¥"¢ (as we
recall) is a concentric box of B with side length 32¢ . By (7), we see that this
percolation process satisfies the (N, N’, 64, p)-condition where p — 0 as
N — oo. Now, in order that dpay (0 AN /4, 0AN/2) < (N")¥, there must exist
an open lattice animal on B(N, N’) of size at least %. Applying Lemma 2.10

completes the Proof of Proposition 2.2 (since («(1 — (0‘1—_01 A %)) >1). O

2.4 Proof of Theorem 2.1

In this subsection, we will show that the probability for {o € C*¥} has a poly-
nomial decay with large power (Lemma 2.14), which then yields Theorem 2.1
by a standard application of Lemma 2.10. In order to prove Lemma 2.14, we

first provide a bound on the probability for {0 € Cﬁ M} (Lemma 2.11), whose
proof crucially relies on Proposition 2.2.

Let @ > 1 be as in Proposition 2.2 (note that we can assume without loss
that o < 2). Let /T/a < o’ < 1 (and thus we have a(a’)> > 1).

Lemma 2.11 For N° > 16, set A = (NQ)_O‘("‘/)2 and let k™) pe defined as
in (9) for N < N°. Write m$, = m3,(N°) = P(o € CANY. Then there exists
C = C(e) > 0 such that m$,, < C(N°)~°.

Remark 2.12 (1) In this lemma, regardless of the size of the box under con-
sideration, the amount of perturbation A in our field 2N) only depends on
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N°. This is crucial for (20) below. (2) Since a(a’)> > 1, we have that
A < 1/NF¢ (this is crucial for getting a large power in the polynomial bound
as in Lemma 2.14). (3) Since our perturbation A = (N <>)_"‘("‘/)2 applies to all
N < N°, when N is very small in comparison of N the perturbation is possi-
bly too mild and thus we may not have a good control on C,ﬁ\ V. However, this
is not a problem because in the proof below we will only consider N > (N oye
(for which the perturbation is still significant).

Proof Write K = (N <>)"“"/. We claim it suffices to show that there exists
No = Ny(¢) such that for N® > N

!

mSy <K~ Emb, for (N < N < N°. (19)

Indeed, since K = (N <>)"“",, we can deduce from (19) by recursion that mﬁjo <

e=¢10gN? for some constant ¢ > 0, which yields the claimed bound in the
lemma (with room to spare).

We now turn to the Proof of (19). Suppose that (19) fails for some (N 0)0‘/ <
N < N°.Since Ay Cv+ Ayy forallv e Ayjsandv+ Anyp C Ay forall
v € An/2, by (5) we see

N2
EICY 0 Anjal > 2om3y  and BICH 0 Ayl < NPmfy 5. (20)

Together with the assumption that (19) fails, this yields that
EICAN N Ay gl > 327 LK T EICAY N Ay ol

Since |C,ﬁ\N N A4l and ICi\N N Ay 2| are integer-valued and are at most N2,
the preceding inequality implies that (recall that o’ > 1//a > 1/ V2)

1

1—o’
P(CIY N Anjal > 647K 3ICHY N Awpal) > oo

Now, set No = No(¢) sufficiently large so that

1

— —NK _ _1;0/ 8 ’
oo~ le=Mand 64~ 'Kk~ >EforallN>(No)“. (21)

Therefore, by Proposition 2.2, there is a positive probability such that

ICA¥ M Ayl > 647 K= 27|CA% 0 Ay p|  and
dci\N(aAN/‘l-a 0ANp) = K.
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In particular, there exists at least one instance for the two events in the preceding
display to occur simultaneously. This contradicts Lemma 2.5, thus completing
the proof of the lemma. O

In the Proof of Lemma 2.14 below, it is important for us to have inde-
pendence between different scales. To this end, it is useful to consider a
perturbation which only occurs in an annulus. In order to make a difference
in notation from the previous perturbation (which occurs in a whole box), for
A(N) > 0 we define (we emphasize the dependence of A on N in the notation
here since later in Lemma 2.14 we will consider perturbations for different N’s
simultaneously)

i’\lgN)Z hy + A(N) fOI‘UEAN\AN/4, 22)

hy forv e Ayys.
We then define CA¥ similar to CAV but with respect to the field {fzf)\' v e AN}
Further, let CAV = ¢AN N AN (so C2V is a version of Cﬁ N but it replaces
CAN with CA¥ in its definition).

Lemma 2.13 Let A(N) = (N/4)~® and define (A : v € Ay} asin
(22). Then there exists C = C(g) > 0 such that P(o € Cf\N) < CN™.

Proof Forv € dA /2, let B, be a translated copy of A y /4 centered at v. Thus,
for all u € B, we have E;N) =h, + (N/4)_°‘("‘/)2. Recall mfv/4(N/4) as in
Lemma 2.11. By (5) and Lemma 2.11,

P(v € CM) <mf, 4(N/4) < CN™°.

Hence, P(0A N2 N C*A N£@ <CN = by a simple union bound. Combined
with Lemma 2.6 (and the simple observation that o cannot be connected to
d Ay by a path in C,f\ Nif oAy 2N C*A N = @), this completes the proof of the
lemma. o

Lemma 2.14 There exists C = C(g) > 0 such thatmy < CN 3.

Proof A rough intuition behind the proof is as follows: the random field in
each dyadic annulus has probability close to 1 to stop the event {0 € CA¥}
from occurring and thus altogether we get a polynomial upper bound with large
power. In order to formalize the proof, we will apply Lemma 2.13 and employ
a careful analysis to justify the “independence” among different scales.
Without loss of generality, let us only consider N = 4" for some n > 1. For

each such N, define {4\ : v € Ay} as in (22) with A(N) = (N /4)~*@)?,
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LetE;, ={o ¢ Cf\ 4t }and E = Ng.9,<e<n E¢. (Note that there is no containment
relation among the events E;’s, since each event depends on a different pertur-
bation.) By Lemma 2.13, we see that P(E€) < CN 3 for some C = C(¢) > 0
(whose value may be adjusted later in the proof). Write 2, = Aye \ Age-1.
For09n < € < n,let Fy = o(hy : v € Aye) and write

hy = (1) hyy, + gy forve Ay, (23)

where {g, : v € 2} is a mean-zero Gaussian process independent of 45, and
{gv : v € Ay} for 0.9n < £ < n are mutually independent (note that g,’s are
linear combinations of a Gaussian process and their means and covariances
can be easily computed). Let F, be the o-field which contains every event
in Fy that is independent of hg, (so in particular F; C féﬂ C Fi+1). By
monotonicity, there exists an interval /, measurable with respect to 7, such
that conditioned on F, we have o € C*4¢ if and only if hg, € I;. Let I} be the
maximal sub-interval of I, which shares the upper endpoint and with length

/N2
, |Q[[|.401(01)
|Iz| < 4a(a/)2l

on F, we have {o € CMOY N E, only if hg, € I;. Thus, for 0.9n < € < n,

. By our definition of E,, we see from (23) that conditioned

P({o € CM¢) N Ey | F)) < P(hy, € I)).
Combined with the fact that Var(hg,) = £2|y|, this gives that

C
Ay /

Po e CINE | Fp) < 4@

Since {o € CA'}NE = Ny—p o, (10 € CA4 YN Ey) and since {0 € CA4}NE, is
JFe-measurable (and thus is fé 41 -measurable), we deduce that P({o € CA¥}N
E) < CN73. Combined with the fact that P(E€) < CN 73, it completes the
proof of the lemma. |

Proof of Theorem 2.1 Let No = Ny(e) be chosen later. For B € B(N, Ny),
we say B is open if C B n p # (). Clearly, this percolation process satisfies

the (N, Ny, 4, p)-condition where

Blarge

p=PCE" NB#¥) < Nimyyo <CNy' forC =Ce) > 0. (24)
(The last transition above follows from Lemma 2.14.) In addition, we note that
in order for 0 € C™V, it is necessary that there exists an open lattice animal
on B € B(N, Ny) with size at least TI\JI\/O' Now, choosing Ny sufficiently large
(so that p is sufficiently small, by (24)) and applying Lemma 2.10 completes

the proof. o
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3 Exponential decay at positive temperatures

In this section, we prove Theorem 1.1 for the case of 7 > 0. Our proof method
follows the basic framework presented in Sect. 2 for the case of T = 0,
which applies the result in [1] in a crucial way. However, there seem to be
significant additional obstacles due to the randomness of Ising measures at
positive temperatures. For T = 0, it suffices to consider the ground state which
is unique with probability 1, and thus ground states with different boundary
conditions and external fields are naturally coupled together. In the case of
T > 0, on the one hand we try to carry out our analysis with validity for
all reasonable (e.g., for all monotone couplings) couplings of Ising measures
whenever possible (see Sect. 3.1); on the other hand it seems necessary to
construct a coupling with some desirable properties in order to apply [1] (see
Sect. 3.2). Both of these require some new ideas as well as some delicate
treatment.

Organization for the rest of this section is as follows. In Sect. 3.1, we verify
the hypothesis in [1] via a perturbation argument and thereby prove that under
any monotone coupling for Ising spins with plus/minus boundary conditions,
the intrinsic distance for the induced graph on vertices with disagreements
has dimension strictly larger than 1. The proof method is inspired by that
of Proposition 2.2, but the implementation is largely different with new tricks
involved. In Sect. 3.2, we introduce the notion of adaptive admissible coupling
and a multi-scale construction of an adaptive admissible coupling is then given
in Sect. 3.3.1. In Sect. 3.3.2, we then introduce another perturbation argument,
using which we analyze our adaptive admissible coupling in Sect. 3.3.3 and
prove a crucial estimate in Lemma 3.17. In Sect. 3.4, we provide the Proof
of Theorem 1.1 for T > 0, which requires to employ an admissible coupling
such that the disagreement percolates to the boundary.

3.1 Intrinsic distance on disagreements via a perturbation argument

For any A C 72, we continue to denote by da (-, -) the intrinsic distance on
A, i.e., the graph distance on the induced subgraph on A. Let o V% be spins
sampled according to *¥-*. We will continue to use repeatedly the standard
monotonicity properties of the Ising model with respect to external fields and
boundary conditions (c.f. [3, Section 2.2] for detailed discussions). Let = be
a monotone coupling of V¥ (that is, under 7 we have o2V + > AN ™)
and let

CAV = CANT = (v e Ay 1oV > gV (25)
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(Note that 7 depends on the random field 4.) In addition, denote by P ® 7
the joint measure of the external fields and the spin configurations (similar
notations also apply below). The following proposition is the major goal of
this section.

Proposition 3.1 There exist « = a(e, B) > 1, k = k (e, B) > 0 such that the
following holds. For all 0 < ¢ < 1, there exists Ny = No(e, B, ¢) such that
forall N > Ngand 1 < N1 < Ny < N/2 with Ny — N1 > N€ the following
holds for all monotone coupling w of W™N-*:

P® 7 (dony (AN, dAN,) < (N2 — ND¥) <« le ™V, (26)

Remark 3.2 (1) The preceding proposition is analogous to Proposition 2.2. In
the present case, it is crucial that the result holds for all monotone couplings
(note that the intrinsic distance may depend on the coupling), so that we
can apply it to couplings which we construct later.

(2) In Proposition 3.1, we introduce parameters Ny, N> (as opposed to N| =
N /4 and N> = N/2 in Proposition 2.2) for convenience of later applica-
tions. The condition that N — N1 > N€ is just to ensure that the decay in
probability absorbs the number of choices for starting and ending points
of the shortest path. This slight extension does not introduce complication
to the proof.

The Proof of Proposition 3.1 again crucially relies on the result of [1].
In order to apply [1], the following lemma (analogous to Lemma 2.8) is a
key ingredient. For any annulus .4 and C C Z2, we continue to denote by
Crosshard (A, C) the event that there is a contour in C which separates the inner
and outer boundaries of A. Let

&t = 5]:\5 = Crosshard(An/g \ Any32, {v € Ay : Glf\N’i ==+1}). 27
Lemma 3.3 There exists § = 5(¢e, B) > 0 such that for all N > 32

min{P @ ¥ (€Y),
PC Y (o) paves = (@M 7)) aym) > 107N} < 16
veEAN/8
In particular, P ® 7w (Crosshard (A n /g \ An /32, CAVY) < 1— 3 for all monotone

coupling 7w of uW™N-*,

Remark 3.4 By Lemma 3.3, either of the following holds: (1) with positive
probability the plus-spins with respect to the plus boundary condition does
not separate the boundaries of an annulus (this is a stronger than what was
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proved in Case 1 in the Proof of Lemma 2.8); (2) with positive probability
the expected number of disagreements (averaged over the Ising measures) is
small (this corresponds to Case 2 in the Proof of Lemma 2.8). Assuming either
property, we are able to derive a uniform bound on crossing probabilities for
disagreements under any monotone coupling.

After establishing exponential decay, then it is clear that Property (2) holds.
In addition, we know that with overwhelming probability away from the bound-
ary the spin configurations with plus and minus boundary conditions agree with
each other. Therefore, by symmetry and planar duality we see that Property
(1) also holds.

3.1.1 A perturbative analysis

Before proving Lemma 3.3, we need some preparational work on a certain
perturbative analysis. This is analogous to Lemma 2.5, which has been applied
twice in the case of T = 0: in the Proof of Lemma 2.8 and the Proof of
Lemma 2.11. For T > 0, it is more complicated and thus we provide two
separate versions of perturbative analysis, both of which are proved via keeping
track of the free energy. The first version is presented in Lemma 3.5 in the
present section (for the application in Lemma 3.3), and the second version is
presented in Sect. 3.3.2 (for the application in Lemma 3.17).

For any set A C Z? and a configuration T € {—1, 1394, analogous to (1)
we can define the Hamiltonian on A with boundary condition t and external
field {h,} by:

HM o)=—=( > oo+ Y. outu+ Y ouhy) (28)

u~v,u,ve u~v,ucA,ved ueh

for o € {—1, 1}*. We can then analogously define the Ising measure 17 by
assigning probability to o € {—1, 1} proportional to e ¥ M) In addition,
we define the corresponding log-partition-function (it is the negative of the free
energy; in our analysis, it seems cleaner to work with the log-partition-function
so not to be confused by the negative sign)

FA’Tzélog( 3 Y@, (29)

For simplicity, we will only consider N = 2" for n > 10. For A > 0,
A’ > 0and 0 <t < 1, we will consider the following perturbed field in this

@ Springer



Exponential decay of correlations in the two-dimensional... 1019

section (which is increasing in 7):

hy + A fOl‘UEAN\AN/g,

R = p0N) = (30)
hy +tA forv e Ayys.
(We draw the reader’s attention to that ¢ appeared in the definition of h,(f) only

for v € Apys, and that hO # hif A’ > 0. The perturbation in (30) is more
subtle than that in (9), for the reason that we wish to take advantage of (41)
below later with a judicious choice of A’.) Let u¥-*7 be Ising measures
with plus/minus boundary conditions and external field {hff) v e Ay} In
addition, let H*N-%7 be the corresponding Hamiltonians, let FAN-%7 be the
corresponding log-partition-functions, and let o *¥-*' be spin configurations
sampled according to p N1,

For notation convenience, for any set I' C 72, let Sr be the collection of
vertices which are not in I" and are separated by I" from oo on Z? (i.e., the
collection of vertices that are enclosed by I').

Let § C Ay be a subset which contains Ay /g and let I' = 9§ (thus we
have S C Sp).

For any T € {—1, 1}', we denote by u5™' the Ising measure on S with
boundary condition 7 and external field {h,(f) : v € S}. In addition, let HS-©!
be the Hamiltonian for the corresponding Ising spin, and let F5-™! be the cor-
responding log-partition-function. Also, we let 5 ¥/ be the spin configuration
sampled according to 5>, For later applications, it would be useful to con-
sider the log-partition-function restricted to a subset of configurations. To this
end, we define

1 Tt
Rt = glog (e M) for c-L . 6D

oeQ

In addition, for any measure MS U6 we define ,ug’” to be a measure such that

nG™ @) = ST T @) foro e Q.

(We draw readers’ attention to that ©5- 7/ () is the total measure of € under
w® T and thus is a number, and that Mé’” is the measure ;5 ! conditioned on
the occurrence of €2.) For convenience, we let agsz’” be the spin configuration

sampled according to M‘gz’r’z. Further, define (note that below we sum over

v € Ayy32 as opposed to v € S)

S,t,t S,t,t
mgt = " (og} ) S (32)

VEAN/32
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For notation convenience, we write m5- 7! = m“gz’” ifQ={—1,1}5. We say
Q c {—1,1}% is an increasing set if o € Q implies that ¢’ € Q provided
o’ > o, and we say Q is a decreasing set if Q€ is an increasing set. In what
follows, we consider t+, 7~ € {—1, 1}V such that t+ > 7.

Lemma 3.5 Quench on the external field {h,}. We have that for any increasing
set QY c {—1, 1} and any decreasing set @~ c {—1, 1}

1
Sttt S, Tt
A/O (mGy 7 —mg- )dt

1
<8 (rf—1,) - 3
vell

(log w57"0(Q%) +log 57 1(27)).
Proof The proof is done via keeping track of the change on the difference of
log-partition-functions with respect to different boundary conditions when we
perturb the external field. In Step 1, we bound such difference from above by
the number of disagreements on boundary conditions; in Step 2 we bound such
difference from below by the expected number of disagreements, with a caveat
that we use the notion of “restricted” log-partition-functions as in (31); in Step
3, we address the caveat by linking the two notions of log-partition-functions.
Step 1. We will prove (below the equality is obvious since T+ > 77)

(FS,‘[+,1 _ FS,‘[_,I) . (FS,‘[+,0 _ FS,‘[_,O)
<16-#vel:rf#1,)=8) (rf —1,). (33)

vel

(Here we use #A to denote the cardinality of A for a finite set A. We switch
from the more compact notation |A| to #A in this section, as we wish to avoid
somewhat awkward notation when | is followed by another | which means
“conditioned on”.) Since each vertex has 4 neighbors in Z2, a straightforward
computation gives that

+
_ HS,T ’I(U)
FS,r+,l . FS,r_,l Zae P

1
= — log —
BTN, et

1 , -
< —log SPHYEIT AL <8 Hy e T ot #£T)

B
Similarly, we have that F$7"0 — FS77.0 > _g .4ty e T : 7,7 # 7,7} This

proves (33).
Step 2. We will prove

S,tt,1 S,t,1 S,tt,0 S,t7,0
(FQ+ _Fgf )_(FQ+ _Fgf )
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1
+ -
> A/ myr " —m3T Nt (34)
0
We write
s,tt.1 s,t7.1 5,770 5,77.,0
(FQ: FQ—T ) - (FQ-: FQ—T )
S, tt,1 S,tt,0 S, 77,1 S,t7,0
= (Ft = Fyl ) = (T = FYTO). (35)
Thus, we get that
ldFS,T N
S,t*1 S,7%,0 o+
Foy w — Fox :f Tdt. (36)
0
Sii't S, tE 1
. ST,
Since —4— = ZUGAN/S Aoy 1) sk, We see
) I_,LQi
Sttt S,t7,t
dF;>. - dF>" - + -
Qt Q Sttt St .t
> D Aol st = (057" o)
VEAN/32 at @

where the inequality follows from the fact that

Sttt Sttt S,t7,t S, 1.t
<O_Q+’v >l/-S’fr+’t P (GU ! )Ms.z"',z = (GU ’ >MS,I_,t = (O'Q, v )MS,I_,I
Q on
forallv € S,

In the preceding display, the first and the third inequalities follow from FKG
inequality [13] and the second inequality follows from monotonicity. Com-
bined with (36) and (35), it yields (34).

Step 3. From definitions as in (29) and (31), we see that

1
R 502 pSThl @, (37)

and similar equalities hold for other combinations of boundary conditions,
external fields and Q.
Combining (33), (34) and (37), we complete the proof of the lemma. O
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3.1.2 A lower bound on the intrinsic distance

Denote by V>* = (v € § : 0, = £1} for S C Ay and o € {—1, 1}5. For
any § O Apyg, define

QF = QF(S) = {o € {—1, 1}® : Crosshaa(Anys \ Any32, V7 F) occurs }.
(38)

We see that Q7 is an increasing setand Q™ is adecreasing set. For A C A C Z?
and o € {—1, 1}, we denote by o4 the restriction of o on A. Let r > 0 be
a constant chosen later. Recall (30). Let A = 101,% and A’ = t*A for

NGBAD
0 < t* < 1 to be chosen.

Lemma 3.6 Forany p,r > 0, there exists c = c(e, p, r, B) > 0 such that for
any event Ey with P({hg) v e Ay} € EN) > pforsome( <1, t* <1, we
have that P({h, : v € Ay} € EN) > c.

Proof The proof is an adaption of Lemma 2.7 except for minimal notation
change, and thus we omit further details. O

Proof of Lemma 3.3 The proof shares similarity with that of Lemma 2.8, but
the present proof is substantially more involved. We first provide a heuristic
outline of the proof, and we will not be precise on notations or unimportant
constants in this informal description. The statement will follow immediately
if the probability for existence of a plus contour with respect to plus boundary
condition is strictly less than 1, and thus we suppose otherwise (formally,
we suppose (39) below). We wish to compare the number of disagreements
in Ay/3> with that in Ay >. To this end, it will be useful to consider the
“enhanced” disagreements in A /3 (that is, when we pose plus and minus
boundary conditions on d A y g instead of 9 A y ; the word “enhanced” is chosen
because by monotonicity the enhanced disagreements stochastically dominate
the original disagreements). We now compare the enhanced disagreements in
A 32 and disagreements in Ay /2 in both directions.

e The “<” direction (Step 1 below): This is where plus (minus) contours
come into play. Conditioned on existence of plus and minus contours, the
disagreements in A /3, stochastically dominate the enhanced disagree-
ments. In addition, by Lemma 3.5, the number of disagreements in A /32
is upper bounded by that in .4y > (up to an additive term that is related to
the probability of existence of plus/minus contours, which we will address
later). Altogether, we get that the number of enhanced disagreements in
A /32 is upper bounded by the number of disagreements in Ay /> (see

(49)).
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e The “>” direction (Step 2 below): The set of disagreements in Ay 2 is
dominated by a union of constant copies of enhanced disagreements in
A ny32, where the number of disagreements in all these copies are inde-
pendent of the enhanced disagreements in A /32 (but not of each other).
This implies that with positive probability, the number of enhanced dis-
agreements in A y 3 is larger (up to a constant factor) than the number of
disagreements in Ay /2 (see (53)).

Now, if we choose the constants appropriately, we will see that the preceding
two scenarios will occur simultaneously with positive probability, which yield
bounds in two directions that “almost” contradict each other. These events can
only happen concurrently if the logarithmic term we ignored earlier (which
becomes % in (49)) plays a significant role. But this can happen only when
the typical number of enhanced disagreements is at most of order N, in which
case an application of Markov’s inequality (see (45)) yields the desired lemma.

We next carry out the proof formally, where we slightly shuffle the order of
arguments: we first show that if the typical number of enhanced disagreements
is at most of order N (see (42)), then the lemma holds. Next, we prove (42)
(which is the main challenge) by contradiction, via the aforementioned two
directional comparisons.

For convenience of notation, write

Apn.E,
EF1 = Crosshard (Anys \ Anyzo, VO 0%),
We suppose that

min {PQ u*VH (ETH) PR u™=1ENH =1 —r *1071%. (39)

0<r<1
Otherwise Lemma 3.3 follows from Lemma 3.6 (since under any monotone
coupling we have Crosshard (An/s \ Any32, CAVY 5;\7 N &y, where 5;? is
defined in (27)). We remark that by monotonicity the preceding inequality is
equivalent to min{P @ pu V90 P uiv—1 (=) > 1 —r=*10710,

Let & = {u™vT0(E£+0) > 99/100} N {2V —1(E~1) > 99/100} be an
event measurable with respect to the Gaussian field. By (39), we see that

P(E*) > 1—107274 (40)
Let t* € [0, 1] be such that
inf (0 : P(m™Vs 1 — AN > 0y < 1/2r) = 07, (41)
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where 0* = ming< <) inf{f : P(mAVsH0 — mAvs=1 > 0) < 1/2r). We
claim that

0* <1073 'N. (42)

We first show that (42) implies the lemma. For any box A, let ABi2 be the
concentric box of A with side length 4 times that of A. Let r be a large enough
constant so that we can write AN/g = U!_,A;, where A; is a copy of Ay/32

and A;’s are disjoint such that A & ¢ Ay for I < i < r. By monotonicity,
we see that foreach 1 <i <r

PO (o) ayoar — (@2 70)

UGA,‘

N«AN’i’t*) > 9*)

AB1g

Blg * *
+t —,1 _
]P’(E ( B (o ) me ) >0 <27
'LL 1

where the last inequality holds due to our choice of t* asin (41) and A" = t*A
(thus hff ) = hy + A’ for v € Ay). Hence, a simple union bound gives that

* 4% 1
PO D (o) s = (0 70 ) ayee) <107 > 2.0 (43)
UGAN/g
By Lemma 3.6, we get that
PC Y (o) ayer = (0M7) jay) > r6%)
vEAN/8
<1—8 ford=25(,B,r)>0. (44)

Note that 2(#(C*Y N AN/ = Y peny s (00 ) yans = (007 7) an o)

on each instance of the Gaussian field for any monotone coupling 7z of u ¥+,

Therefore, on each instance of Gaussian field (which occurs with probability at
An.—

least §) such that ZUGAN/g GAN’+)MAN.+ — oy ™) jay.-) < 70%, we apply

Markov’s inequality and get that

7 (Crossnara (Anys \ Any2. C*V))
0*r 1
A N
ST@HCN N ANg) 2 35) < N/ < X (45)

where the last inequality follows from (42). This implies that P ® 7 (Crosshara
(Anss\ Any32, CAVY) < 1— 8/2, completing the Proof of Lemma 3.3 (com-
bined with (44)).
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+—— 08na —— 04
AN e
Bl oy

Ay

Fig. 3 Illustrations for geometric setup in Step 1 of Lemma 3.3. The picture on the left illus-
trates the setup for derivation of (47), where we bound disagreements in the grey square by
disagreements on d Ay (the larger dot-line boundary). The picture on the right illustrates the
setup for derivation of (48): by FKG conditioned on plus (respectively minus) contour (drawn
in dots in the picture) the magnetization on the grey box is pushed up (respectively down); this
allows us to compare the disagreements and enhanced disagreements

It remains to prove (42). Suppose that (42) does not hold. We will derive a
contradiction, using the following two steps.
Step 1. We refer to Fig. 3 for an illustration of geometric setup in this step.
Fix N/4 < k < N/2. Write S = Ay and ' = 9S. We first quench on the
Gaussian field and also condition on

(O‘AN"+’1)F=‘E+ and (UAN‘f‘O)r:rf where ¥ € {—1, l}r and T > 1.

(46)

Applying Lemma 3.5, we get that (recall QF = Q*(S) as in (38))

1
Sttt S, Tt
A A (mgy © —mg- ")dt

<8 (rf—1,) -

vel

1 _

E(logus”Jr’O(QJr) +log 157l @7)). @)
T

Conditioned on 057" € @, let € € Vo7 "+ N (Anss \ Any32) be the

outmost contour which surrounds A y/32. Note that € = I'’ is measurable

. +
with respect to {07 !

: v € S5 ). Thus, by monotonicity of Ising model
we see that (o757 ) v/3 conditioned on € = T stochastically dominates

(o ANsHIy 150+ A similar analysis applies to (CARIEDYNN 13o- Combined with
(47), it yields that
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1026 J. Ding, J. Xia

1
A/ (mAN/s,—f—,t —mAN/g’_’t)dt
0

_ 1
<8 (rf—1,) — =

(log 157" 0(Q") + log 571 (@7)).
vell ’B

(48)

Define &4 = {r : u570QT) > 3/4} and Er_ = {t— : 57 L(Q7) >
3/4}. Thus,

pin0ET0)

_ MAN’+’0(€+’0 | (O,AN,-F,O)F c gF,Jr)MAN,-F,O((O_AN,-F,O)F € (C/‘l",+)
+utOERY | @M ¢ Ep YOO ¢ Er )

< pt (@M O e gr ) + 2t (MO ¢ Er ).

Since uV+H0(£:9) > 99/100 on £*, it gives that u V- H0((c v+ ¢
Er.+) > 3/4 and thus by monotonicity u*V ! (et e &r ) > 3/4
(note &r 4 is an increasing set). Similarly, we get w0 A0 e
Er.—) = 3/4 on £*. Consider an arbitrary monotone coupling 7 of pn-+:1
and V-0 restricted to I'. Then we see that on £

mr(€r4,-) > 3+3—1=4% where &4 ={(c*V" " Hrefr 4, (0¥ O)resr .

Averaging (48) over the conditioning of (46) but restricted to the event £r 4+ _,
we get that on £*

A (! _ _
5 /0 (NS AN dE <8 (ot — o MO g )y +2/B.

vell

Since 7T is a monotone coupling, we thus obtain that on £*

A 1
3/ (mAN/s,-i-,l _mAN/S,_J)dt
0

<8 (ot — o0 42/

vell

=8> (o) jayert — (070 ay—0) +2/8.

vell

@ Springer



Exponential decay of correlations in the two-dimensional... 1027

Summing over N /4 < k < N /2, we deduce that on £*

N
+.1 ,—,0
8 Y (o) ayeea — (0 70) g, -0+ 35

veAN)2

1
0

Step 2. For N > 2, recall that Ay = Ay \ Ay/2 is an annulus. Adjust the
value of r if necessary so that we can write Ay, = U_,A;, where A; is a
copy of A3z and A;’s are disjoint such that

Big

A" CAN\Ansg foralll <i<r. (50)

(The geometric setup here is similar to that in the Proof of Lemma 2.8; see the
left picture of Fig. 1 for an illustration.) By monotonicity, we see that for each
1<i<r

POY (o) oyt — (0070 aym0) > 0%)
VEA;
Blg Big
+1 A7, —0
P(Z( AV (o0 ) e ) > 0%)
VEA; mt

* ok
— P(mAN/8,+,t — mANsT 0*) < 1/2r,

where the equality holds due to (50) and A" = t*A (note that hg) = hy +
A forv € An \ Apnyg and for all 0 < t < 1), and in addition the last
inequality holds due to (41). Thus, a simple union bound gives that the event

A +,1 An,—,0 .
{ZUEAN/2 N ) syt — (0w N ) An.—0) < r6*} contains an event
& Ay, Which is measurable with respect to {h, : v ¢ Apy/s} such that

P(gAN/z) > 1/2. (&2))]
Furthermore, let 7 = {1 < ¢t < 1 : mAvsbHl — Ans. =1 > g*%) By

(41) we have E|7| > 1/2r where |7 is the Lebesgue measure of 7. Since
|7 < 1, wehave P(|7| > 1/4r) > 1/4r. Therefore,

1
IP’(/ (AN ANE TG > 0% J4r) > 1 /4. (52)
0

Combined with (51), this yields that

P(E®) > 1/8r (53)
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where £° is the event such that

1
/ (mAN/s,-i-,t _ mAN/S,_al)dt
0

™ 2\—1 A 1 An,—,0
> -2 @D Y (@ s = (@70 ay o),
veEAN)2

Suppose (42) does not hold. Then by (49) and the preceding display, the
events £* and £° are mutually exclusive. But by (40) and (53), we have P(E*)+
P(E°) > 1, arriving at a contradiction. O

Proof of Proposition 3.1 The Proof of Proposition 3.1 at this point is highly
similar to that of Proposition 2.2. As a result, we only provide a sketch empha-
sizing the additional subtleties.

Let 77 be an arbitrary monotone coupling of u¥-* and let CAV = CANT
be defined as in (25).

For any rectangle A C R? (whose sides are not necessarily parallel to the
axes), recall that £4 is the length of the longer side and AL¥'2¢ is the square
box concentric with A and of side length 32¢ 4. In addition, the aspect ratio
of A is the ratio between the lengths of the longer and shorter sides. Consider
an arbitrary rectangle A with aspect ratio at least a = 100. For a (random)
set C C Z2, we continue to use Cross(A, C) to denote the event that there
exists a path vy, ..., vr € A NC connecting the two shorter sides of A. For
any monotone coupling A of ,uALarge’i (below we denote cAME = {ve
Alarge . AL 4 aALarge’*} under nALarge), we can adapt the Proof of
(17) and deduce that (write N’ = min{2" : 2"*t2 > ¢4}, and recall £ as in
Lemma 3.3)

P ® MAN/,-F(E;/)

aree Lar; e
>1-4(1 - P 4" Cross(4, V7" )
>1—4(1 —P @™ (Cross(A, C4"™))),

where the second inequality follows from the fact that Cross(A, CALarge) C

Large
Cross(A, V"A : "+’+). In addition, by a similar derivation of (45),

P ® 74" (Cross(A, C4"™))

<P #CA™ N A) > €4/2)
1 A /, A K
S SUHPC YT (00T s = o™

UEAN’/8

) ) > 107°N).
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Therefore, by Lemma 3.3,
P @ nA"™ (Cross(A, CA™)) < 1—68 where§ = 8(s, f) > 0. (54)

It is crucial that (54) holds uniformly for all possible monotone couplings
A" Note that the probability for Cross(A, C*¥™) could potentially depend
on the location of A, either due to different influences from the boundary
at different locations or different coupling mechanisms chosen at different
location. However, thanks to (54), all these probabilities have a uniform
upper bound which is strictly less than 1. In addition, by monotonicity of
the Ising model, for a collection of rectangles that are well-separated, the cor-
responding crossing events can be dominated by independent events which
have probabilities strictly less than 1. Next, we complete the Proof of Propo-
sition 3.1 by utilizing this intuition. For any ¥ > 1 and any rectangles
Al,..., Ay C {v € R2 . [vloo < N/2} with aspect ratios at least @ such
that (a) Lo < €4, < N/32forall 1 < i < kand (b) AT, ..., AL are

L . Av .t . ALaree
disjoint, we see that under any coupling 7 of w™¥ =, there exist sets C*
such that

ALarge . . . ALarge +
e C%  is sampled according to some monotone coupling of ™

Large
o CANT N A; C CA “n A; (by monotonicity of Ising model with respect
to boundary conditions).

Large
° /-'LAi ==X

Large .
A;"""} respectively).
Therefore, by (54),

s are mutually independent (as they only depend on {h, : v €

Large
P @ m(Nf_,Cross(A;, CA ) < (1 — 8)F.
This proves an analogue of Lemma 2.4, which verifies the hypothesis required
in order to apply [1]. The remaining proof is merely an adaption of Proposi-
tion 2.2 and thus we omit further details. O

3.2 Admissible coupling and adaptive admissible coupling

In Sects. 3.2 and 3.3, we wish to prove an analogue of Lemma 2.11. In the
case for T > 0, it seems quite a bit more challenging as the choice of the
coupling for various Ising measures plays a role, which seems to be subtle in
light of Remark 3.8 below. To address the issue, we consider a general class
of couplings for various Ising measures (i.e., adaptive admissible couplings)
in this section. In Sect. 3.3.1, we describe a particular construction of adaptive
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admissible coupling, which is suited for the multi-scale analysis (the multi-
scale analysis is a more complicated version of the Proof for Lemma 2.11)
presented in Sect. 3.3.3.

For k > 1, we consider deterministic boundary conditions and external
fields (@, (R : v € A}) where @ € {—1, 119 for 1 < i < k (these will
be fixed throughout this section). We define the partial order < by

i< jift® <t¥ and KD <nW. (55)

We say that (AR a(k)) (fore®, ..., o® e {—1, l}A) is an admissible
configuration if o) < o) foralli < j. Denote by X the collection of
all admissible configurations. For A C A, write (AR a(k)) A for the
restriction of (¢ P, .. ., a(k)) on A.

Definition 3.7 For each 1 < i <k, let [L(i) be the Ising measure on A with
boundary condition ) and external field #®). We say that a measure 7 is an
admissible coupling of (", ..., u® if r is supported on X and its marginal
distributions agree with s,

Remark 3.8 Ideally, it would be great if there would exist an admissible
coupling 7w which satisfies the Markov field property. Or, it would also be
great if there would exist an admissible coupling = which satisfies a weak
version of Markov field property, such that for any I' C A the measure
n(aé’r) e-| (WM, ..., o(k))r) is the Ising measure on Sy with boundary
condition O—ngg)[‘ and external field {hg) : v € Sr}. However, such coupling
does not exist as we can see from the following simple example. Let us con-
sider Ising measures on a line segment with no external field and plus/minus
boundary conditions on one end (denoted as ). Suppose that there exists an
admissible coupling 7 (in this case a monotone coupling) with weak Markov
field property. Then conditioned on the event that the two spins disagree at the
other end of the line (denoted as v), we claim that the spins from the two Ising
measures have to disagree on every vertex on the line, thereby violating the
weak Markov property. In order to verify the claim, we suppose the claim fails
and let w be the first vertex (from u) where the two spins agree with each other.
Conditioned on spins from u to w, the two marginals at v are the same (by the
weak Markov property) and thus have to agree in a monotone coupling.

Inlight of Remark 3.8, we will seek for admissible couplings with a desirable
property even weaker than the weak Markov field property. To this end, we
will explore the spins using certain “adaptive” algorithm and then we will
argue that the marginal measures on the unexplored region remain to be Ising
measures. This motivates us to consider the adaptive admissible coupling
(see Definition 3.9 below). Let B = {(c,...,0®) e {(—=1, 1} : 6@ <
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o) foralli < j}. For 61, ..., 6 which are measures on {—1, 1}, we say
that 61, ..., 6y are admissible if 6;(1) < 6;(1) forall i < j. In this case, let
6 be the monotone coupling of 0y, ..., 0. That is, 6 is the joint measure of
(o1, ..., 0r), which is defined in terms of a uniform variable U on [0, 1] such
that

o, =—1 ifandonlyif U <1—6;(1).

Clearly, 6 is supported on Ej and its marginals are 61, ..., 6. In addition, 6
is consistent, i.e.,

The projection of 0 onto the first (k — 1)
spins is the monotone coupling for 6y, ..., 6x_1. (56)

In order to define adaptive admissible couplings, we make use of explo-
ration procedures. An exploration procedure can be encoded by a family
of deterministic maps {fy : V C A,V # A} where fy is a mapping
that maps an admissible configuration on V to a vertex in A \ V. That is
to say, if we have explored a set V C A and the spin configuration on
V is given by (¢, ..., %)y, then the next vertex we will explore is
fo@®, ... a®)y).

Definition 3.9 For each exploration procedure { fy}, we associate an admis-
sible coupling in the following manner. Let Vo = @. For r > 1, let
v = fyr_l((a(l), e a(k))yt_l). Let V; = V;—1 U {v;}. Quenched on the
realization of {V,_1, (@M, ...,0®)y, 1, for 1 < i < klet 6 (%1) =
M<f>(a5j) =41 | U\()lt)-l)' Let #© be the monotone coupling of 8, ..., 6,
and we sample (1, .. ., a(k))vt according to 0. We repeat this procedure
until 7 = #A. We let 7 be the measure on (o, ..., o®) at the end of
the procedure. In addition, we say that a random set V is a stopping set if
{V =V, = V;} (for any deterministic V; C A) is measurable with respect to

{@®, ..., 0®)p).

Remark 3.10 In the study of spin models, it is common to use an exploration
procedure to discover certain observables (such as interfaces) associated with
spin configurations. Often times, an instance of spin configurations is sampled
a priori (which is usually sampled according to a Gibbs measure) and then
the exploration procedure is performed on this instance. That being said, it
is not uncommon to construct a measure as the exploration process evolves.
Definition 3.9 is one example of such constructions, where the spin configu-
ration is sampled as the exploration procedure evolves and more importantly
the measure on spin configurations depends on the exploration procedure.
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Lemma 3.11 For each exploration procedure, the measure 7 given in Defini-
tion 3.9 is a well-defined admissible coupling. In addition, for any stopping set
V, given the realization of V and (0(1), R O’(k))v, the conditional measure
of  restricted on V¢ has marginals corresponding to Ising measures on V¢
with boundary condition Uavf and external field {h(’) v e VY

Proof The measure 7 is well-defined since we can inductively verify that
for t = 0,1,2,..., the sequence 91(1),...,9,?) is admissible and thus
(AN o(k))v, .1 18 admissible. To prove the second part of the statement,
it suffices to show that foreach 1 <i < kand 1 <1 < #A,

noy, e 1M . o®)y Vi =V
=1y, e lay) ). (57)

We prove (57) by induction for# = #A, ..., 1.Itis obvious from Definition 3.9
that (57) holds for r = #A. Suppose (57) holds for 7, we then deduce for # — 1
that

(@) ] 1 k
T[(UAI\(V,_ZU{UZ € 015,1)1 =41 @D, ..., 60y V2=V

- @ 0)
=106 = =110y ) x DRy, Lo 1 € 10w 00, = %D

This implies that 7T(O'A\V . - (0(1),...,a(k))vt_2,vt_2 = Vip) =

wu® (ol(\’ivt , € a(’) ,)s thereby completing the proof by induction. O

In what follows, we refer to 7 as in Definition 3.9 as an adaptive admissible
coupling. In addition, we will always define adaptive admissible couplings by
presenting an exploration procedure and then consider the associated admissi-
ble coupling given in Definition 3.9. For convenience of exposition, we usually
describe an exploration procedure in words rather than specifying the maps

{fv}

3.3 A multi-scale analysis via another perturbation argument

Let o > 1 be as in Proposition 3.1. Let /T/a < a’ < 1. Let No = Ny(e, B)
be a large number to be chosen. For each N > Ny (of the form 4"), set

A =A(N)=N —a(@) Tn the rest of the paper, we consider the following
perturbation:

il(N)— hv+A fOrvEAN\AN/4,
v =

(58)
hv forv € AN/4.
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We denote by N+

boundary conditions and external field {fng) : v € Ay}, and denote by &
the spins sampled according to ji*V-*. In this whole section except in (69)
and (70), we will quench on the realization of {4,} and thus the external field
is viewed as deterministic.

the Ising measures on Ay with respect to plus/minus
AN, +

3.3.1 A construction of an adaptive admissible coupling

We will define the following adaptive admissible coupling 7, for pAN-E
and iV-%. According to Definition 3.9, in order to specify v» we only
need to specify the exploration procedure (i.e., the order of vertices in which
we sample the spins), as described as follows. Throughout the procedure, we

let Ci\ ¥ be the collection of vertices v which have been sampled such that

N Ay,— ~ Ay, ~AN,— . .
oVt = oM and 62V > 640V, We first sample spins at vertices on
oA fork =N-—-1,N—-2,..., % For vertices on d Ay, for concreteness

we sample in clockwise order starting from the right top corner. Next, let
K = |_N°‘,°‘J and ¢ = L}‘Nl_“,J. A comment on the order of the scales
chosen: the exploration procedure below contains £ phases, and in every phase
we consider an annulus where the inner and outer boundaries have Euclidean
distance N¢ and thus by Proposition 3.1 typically have intrinsic distance
> K > N. This is why we can hope to gain a contraction when comparing
the number of disagreements on an annulus to that on its neighboring (larger)
annulus (see (71) below).

We now turn to the description of the exploration procedure. For each 1 <
J < £ our construction employs the following procedure which we refer to as
Phase j (see Fig. 4 for an illustration). Let N = % —(j - l)N“,.

e WesetAjo= 8AN/0C£N, Vio=An\Ap,andfork =0,1,..., K, we
inductively employ the following procedure (which we refer to as stage).
At the beginning of Stage k + 1, we firstset A y 1 =P and Vj x41 = V.

— If A x = @ (which we denote asevent £; x ¢), we sample the unexplored
vertices in Ay in a prefixed order (which can be arbitrary) and stop our
procedure. Otherwise, we explore all the neighbors of A x (in a certain
prefixed order, which can be arbitrary) which are in A\ V; i (that is,
vertices which have not been explored) and sample the spins at these
vertices. We also put these vertices into Vj x41.

— If a newly sampled vertex is in dA ,_ye (We denote this as event
Ej k.4, where the subscript d suggests an event related to the intrinsic
distance), we sample the unexplored vertices in A y in a prefixed order
(which can be arbitrary) and stop our procedure. Otherwise, if a newly
sampled vertex ends up in Cﬁ Vthenweadditto Aj x4. (Fork > 1,itis
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Fig. 4 Illustration for Phase j of the construction in Sect. 3.3.1. The inside square is A NI_Na's
whose size has been reduced in the picture for better demonstration. On lattice points, empty

indicates an unexplored vertex, an open circle indicates a vertex in Cy ", and a solid disk

indicates a vertex not in Cﬁ N The top-left illustrates the beginning of Phase j, where vertices
on d A v have been explored (vertices outside have been explored too but we did not draw); the
top-right illustrates the middle of Phase j (here k = 5); the bottom-left picture illustrates event
Ej k¢ (here k = 8); the bottom right event illustrates £; x g (here k = 12)

clear that A x records all the vertices in A y- that are of d AN -distance
k to 0 A s and V; i records all the explored vertices up to Stage k.)
e Sample the unexplored vertices in Ay \ A y/_ yo ina prefixed order (which
can be arbitrary).

— N«

Finally, if the procedure is not yet stopped after ¢ phases, we sample the
unexplored vertices in A y in a prefixed order (which can be arbitrary).

Remark 3.12 (1) Later in the analysis, when we refer to sets suchas A ¢, V; «
we mean to use their values at the end of our procedure. (2) Note that in the
preceding procedure, unless some event of the form &; ; 4 or £; x 4 occurred,
the exploration in all the £ phases is within Ay \ Apy/4.
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3.3.2 Another perturbation argument

We use HAN-E FAN-E AN+ (o denote tilde versions of HAN-E FAN.E

oAVE e, deﬁned analogously but with respect to the field {h(N)} deﬁned
as in (58). Without further notice, we will always consider measures where
we couple all these Ising spins together. Thus, in particular, C*¥ and CAV
are defined in the same probability space and we can then define Ci\ N =
CAN N CAN,

We need some preparation before presenting our perturbative analysis.
Suppose that V is a stopping set (see Definition 3.9) obtained when con-
structing 7, described in Sect. 3.3.1. Let 7y, be the restriction of 74,
to V°. (We use prime in the notation n{/c as we wish to save myc for later
use.) By Lemma 3.11 and our definition of 75, we see that 77, depends on
(oANE)), (5AV-F),, only through (UAN ) ape, (62%F) 5. Thus, we may
denote by (¢V* (N Egpe GV CaR )ave) the spin configurations sampled
according to 7, with corresponding boundary conditions on 31¢. Thus,

(o, oV @™ Dvey (GhvE GVE@ Y D) has law a . (59)

In what follows, we will mainly consider the measure 7,,.. For clarity of expo-
sition, we quench on the realizationof V = V.Let S = VSand I’ = 9§ (thus
we have S C Sr). Further, we quench on the values of (o MNVE)p, (A% F)p
by

(™ E)p = GMVE) = 7F, where t T, T e (=1, 1}, (60)

Forv € T (in fact, any v € A ), by admissibility there are only six possible
values for (7,7, 7,7, 7,7, 7,7) as shown in Table 1. For each such possible spin
value, we will define a “hat” version (2,7, ", 7,7, 7,), where the definition
is given in Table 2. Note that the hat version is a modification of the original
spin value, and we emphasize the change in Table 2 by circling out the modi-
fications. We will explain why we introduced the hat version of the spin on I
after a number of definitions. From Tables 1 and 2, we see that

A

T, =ttt T =1 =17 (6])

Q0>
0>

>t >t >

ﬁ

t>

From a notation point of view, despite the fact that 7% = %i, we still differ-
entiate these two notations because our mental picture is that the boundary
conditions % are matched to external field {/,} and the boundary conditions
7% are matched to external field {ngN)}.

Recall that 77 is the admissible coupling for Ising measures with boundary

conditions and external fields ((t5)r, {hy}), (FH)r, {ﬁ,(jN) D), where the order
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Table 1 Original spins on I"

type T T, 7f T,
a. -1 -1 —1 -1
b. -1 -1 +1 -1
c. —1 —1 +1 +1
d. +1 +1 +1 +1
e. +1 —1 +1 +1
f. +1 —1 +1 —1

Table 2 The hat version of the spins on I'

type & 2y 7 7y
a. -1 -1 -1 -1
ob. -1 -1 @) -1
ocC. &) &) +1 +1
d. +1 +1 +1 +1
ec. +1 @) +1 +1
f. +1 -1 +1 -1

of sampling vertex is given by that of 5 ,, conditioned on spin configurations
on the stopping set V = V. In addition, we can extend g to an adaptive
admissible coupling wg for Ising measures with boundary conditions and

external fields ()1, (o)), (FF)r, (B ). (GF)r. (ho)). (GO)r, (A7),
where the order of sampling vertices is determined by the coupling 7. Let

(aS’Ti, 6S’fi, as’fi, 5S’fi) be the spin configuration sampled according to

s (note that we use the tilde symbol on o to emphasize the dependence on

the external field {fz,(JN)}; similarly for H and F below). By (56), we see that
et S5 =8,7F /

the projection of g onto (0>°", 0" ) has measure wg. As a result, we

. . . + ~¢zE At o~ o 24
will simply use g in what follows. We also let HS ™ HST™ HST HST
denote Hamiltonians for corresponding Ising spins. Similarly, we denote by

+ =gz st ~g 2k o . . .
FST  FST FST FST the log-partition-functions of corresponding Ising
measures. Define

ST =veSioST = 1,657 =1

.. 5¢ 7+ At 50 2t + 7+ + 5¢ =+

and similarly define CS T ¢S CSTT. Define Cf’r T =05t NEST
Pt 2E At =g At
andCy'" T =05t NEST.
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Now we have necessary notations to explain the reason for introducing the
hat version of the spins on I". We wish to bound #(Cﬁ” NSN(AN\An/4))in

terms of #(Cﬁ NN T). One way to achieve this is to track the increment for the
difference between the log-partition-functions with plus and minus boundary
conditions when the external field is perturbed. We see that on the one hand, the
increment for the difference between log-partition-functions can be bounded
from below in terms of #(C,ﬁ\"’ NSN(Ay\ Any4)) (see Lemma 3.15); and
on the other hand such increment can be bounded from above by the number
of disagreements for spins on I" with respect to the plus and minus boundary
conditions. However, when approaching the upper bound, the spin values of
Type b, c, e as in Table 1 will also contribute to the upper bound despite the
fact that they do not belong to Ci\ NN T. To address this, we introduce the hat
version of the spins, which are in agreement except on Cﬁ M NT. A crucial
feature as we will show in Lemma 3.13, is that under the admissible coupling

Sttt S, 7% .
g we have C, C Cy . Therefore, the intended lower bound on the
increment for the difference between log-partition-functions is still valid for
the hat version. Another crucial feature of the hat version of the spin is that

vel:tf =t =17, =%, =-1)
=wel:tf=t"=1,%7 =17, =—1) (62)
=el:tt=1% =-l)={pel:tf=117 =-1}.

£ ok
Lemma 3.13 Under the admissible coupling ws, we have Cf’f T
Cs,fi,%i

" .

+ =+ + gt - _qgi—
Proof Foru € Cf’r '* we have a,f’T =be,1 =1 and abf’f =auS’T =—1.
.. . zt + ..

By (61) and the admissible coupling, we see thato,.*© > o2'" = 1;similarly,
r— ~S T ~+ .. .
abf’r < 05,1 = —1.Sou € C5%". In addition, by (61) and the admissible

: A S,ot e ~STT -8
coupling, we see that o, > oy, = 1; similarly, oy, = oy = —1.
55,5+ 5,7 7% .
Sou € C>" . Thus,u € Cy"" *°  as required. O

Corollary 3.14 Under the admissible coupling ws, we have o ¢ C,f S
provided that C2Y NT = .

Proof IfCMV AT = ¢, wehave £+ = £~ = £+ = 7, in which case we have
2+ 4+
= {} and in particular o ¢ et . Combined with Lemma 3.13,

this completes the proof of the corollary. |

(183

s 2% 7%
Cs

@ Springer



1038 J. Ding, J. Xia

Lemma 3.15 We have that

A4 Qi
QAMCSTT N (AN \ ANja))) g
(1_,:\5’,‘["F _ ﬁS,f*) _ (I:S,fJr _ FS,ff) (63)
l6#{vel & =tF =1, =7, = —1}. (64)

v

<
<

0

Proof The proof of the lemma shares some similarity to that of Lemma 3.5.
However, we give a self-contained proof here in order for clarity of exposition.
We first prove (64). A straightforward computation gives that

. _BASTT
_;Sf—:_lngLe ’ A(@
B "y e BT ()

1 - ~ n
< —log SPHVEIT AL <8 Hv e T T £ 7).

B

Similarly, F$" — FST > —8.#{v e I': £, # £,7}. Combined with (62),
this proves (64).
Now we turn to prove (63). We write

(FS,‘EJr _ Fs,ff) _ (I;;S,‘f+ _ FS,‘ff)
— (FS,‘E+ _ FS,‘I?+) _ (F'S,f_ _ FS’f_). (65)

For 0 <t < 1, define

(66)

v

il(t)— hv+tA forUEAN\AN/4,
N hv fOl‘vGAN/4.

Let F5:%" be the log-partition-function on S with boundary condition 7%
(note that 7+ = £+ by (61)) and external field {#"}. In particular, FS:¥"-0 =

FS&" and FSTH1 = FST Similar notations apply for FST! Thus, we
get that
. 1 S 2%
-2 - dF>"
FST5 RSt / Y (67)
0 dt

Denote by o3 S spins sampled according to Ising measures with boundary
conditions 7% and external field {#"}. In addition, for any fixed 7, we let g
be the admissible coupling extended from g by also incorporating the spins
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oSt (again, the order of sampling vertex is given by that of 7). Therefore,

we S€e
At
dFS T .
_ S, T+t
=AY @8
veSN(AN\AN/4)

Combined with (67) and (65), it yields that

(FS,-'EJF o FS,‘Ei) o (I;'S,fjL o FS,‘Ei)

1 A A
= 2/0 Afv e SN (AN \ Angg) 00T £ o5F Vg, dt. (68)

For any v € S and ¢ € (0, 1), by admissible coupling we have aﬁﬁ <

At . 24 A A - s
o3 LG5t and oSt <ot ot <G5 . Therefore,

fveSN(AN\ Anya) : oS T £ ST S Cf’fi’ri N (AN \ Any4).
Combined with (68), this completes the Proof of (63). O

Corollary 3.16 Conditioned on the realization of the stopping setV =V, let
S=V¢and ' = 3S. Then we have

AHFCI NSO (AN \ Anja) | (@8 E GAVE) ) ST NCAVY.

7TAN

Proof Quench on the realization of (oAN-E GAN-E) L ag in (60). By Lem-
mas 3.13 and 3.15,

+ =+
AHCST T N (AN \ ANa))rg
<8#vel:tf=1r=1,% =

=8#vel:t =7 =11, =7

= -1},

QW

v
v
where the equality follows from (62). Combined with (59), this completes the

proof of the corollary. O

3.3.3 Analysis of the adaptive admissible coupling

We now analyze the adaptive admissible coupling m,. Recall that £ =

L}‘N 1_"‘/J and K = |N ““,J , and define Dy to be the event (measurable with
respect to the Gaussian field) by
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— : , , -20
DN = {nAN(lgl}ggchN(aAN/Z—jNa s aAN/Z—(j—l)N“ ) < K) =N }

(69)

By Proposition 3.1 and a simple Markov’s inequality, we see that for C =
C(,B)>0

P(Dy) < CN~%. (70)

In what follows, we quench on the Gaussian field at which Dy does not occur.

Lemma 3.17 We have that (0 € CﬁN) < CN719 on DY, for C =
C(e, B) > 0.

Proof For 1 < j 1 <k <K,let&rp, Eras Vjk, Ajx be defined as
in Sect. 3.3.1. For each 1<j<letEg=U/_ UK & i ganddefine
A
m;k = <#(C* NN (AN/Zf(jfl)N"‘, \ AN/Z,jNa/))IEJC._LQ)nAN .
By Corollary 3.14, it suffices to prove that mj < 2N ~10_To this end, it suffices
to prove that for N > Ng = Ny(e, B) (where Ny is to be selected)
m, < 107m% + N0 forall 1 < j <€ 1. (71)

Let&jq = Ul IUk 1 Eika-Since wpy (Ejq) K CN™ 20 op DY, it suffices to
show that

A
#CN N (AN/ijN“/ \ AN/zf(jJr])NCY/))lgj’ﬂ165'd>7TAN 1072 m . (72)

Fix1 < j<{€Forl <k<K,write§j <kp=Ej—19U Ulegj,i,@ and
Ej<kd = 5]—1,d U Ul.zlé’],i,d. Thus, we can deduce that

A
ARC N Ay jye \ Dy ynne N Les e
Jx

<k
Ayt =Ay+
|(0 N , O N )Vj,k>7TAN
- C c AN / /
= Les oy les o AHCT N (Ao v N Ao (jinyne))

AN, ~An,E
|(U N , O N )Vj,k>7TAN

S#AJ k* 15( <k lgf,gk,d K
where the equality holds since £; <x,¢ and £; <k 4 are measurable with respect
to (oANE GANE) v;«» and the inequality is obtained by applying Corol-

lary 3.16 with V. = V; (note that AN/Z—jN“' N Vix = ¥ on the event
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8 ¢ _<k.4)- Averaging over the conditioning in the preceding display and recall-
1ng thaté’J 10 CE&j <k CEjpand & <x.a C Eja, we deduce that

A
A<#(C NN (AN/Z jNY \ AN/Z—(j-i—l)N"‘/))15;,@15_?61>7TAN
SYCLYYVES P P

1.9 j.gk,d>”AN'

Since i #Ajk - Les_ < RCY N Ay oyne \ Ayjo )
summing the precedlng dlsplay over 1 < k < K yields (72) (recall that
AK = N—«@)? I_N““J > 100 if N > No for large enough Ng). This com-
pletes the proof of the lemma. O

3.4 Proof of Theorem 1.1 for 7 > 0

An,E [ AN.E

We continue to consider 7N defined as in (58), and let , 1L LAY
be defined as in Sect. 3.3. For § > 0, let Qs C [—1, 1] be the collection of
multiples of §, and for g € Qs define 5: ~.q (0 be an event measurable with
respect to the Gaussian field by (the tilde symbol only applies on the minus
version below)

" ng = o)

0N vt =48, (G TV an- < g =8} (73)

"

By admissibility, on the event £, ~ we have 74 (0 € Cx AN ) = §. Combined
with Lemma 3.17 and (70), it ylelds that

P(E) y.,) = ONT'0/5). (74)

(Throughout, O (1) hides a constant that may depend on (e, 8).) Next, we
define

Eong = o0V F) jayr 2 g +8, (00 7)oy < g =8} (75)
By monotonicity, we thus have
EoNg CEonryg and &y . C S:’N/’q forall N/ < N. (76)

Lemma 3.18 Let § = N3/3. There exists C = C(g, B) > 0 such that
P(Eyn.q) < CN~C forall g € Qs.

Proof While the proof of the lemma is similar to that of Lemma 2.14, we
nevertheless provide a self-contained proof for clarity of exposition.

For A C 72, we set h A= Zve 4 hv. Without loss of generality, let us
only consider N = 4" for some n > 1, and for 1 < ¢ < n, we define
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~ql
(R 2 v e Ay} asin (58). Write 2y = Aye \ Ageor. For 0.9n < € < n, let
Fe =0 (hy :v e Ay) and write

hy = (#Ae) Tha, 4+ gv  forv e Ay, (77)

where {g, : v € 2} is a mean-zero Gaussian process independent of Ay, and
{gv : v € Ap}for0.9n < € < nare mutually independent. Let 7 be the o -field
which contains every event in F that is independent of &g, (so in particular
Fo C Fyyy C Feqr). Write & = Uo.gngggngj’ﬂ,q. By monotonicity of

(ot

o, Ay.+ and (O'OA N7y Ay.— with respect to the external field, there exists

) )
Iz 7
an interval /, measurable with respect to 7, such that conditioned on F, we

have &, 4 , occurs if and only if hy, € I;. Let ], , be the maximal sub-interval

::%fz - (here |1;] denotes the
length of the interval I, ). By definition in (73) and (58), we see from (77) that
conditioned on F; we have that &, 4¢ , N (5;“’ 4,V,’q)“ occurs only if hg, € ;.

Thus,

of I, Wthh shares the upper endpoint and |/, <

P(E, a0, N €}y )| F) <Plha, € 1)), for0.9n <L <n.

Combined with the fact that Var(hgy,) = e2#,, this gives that for C =
C(e, B) > 0 (whose value may be adjusted below)

* c
]P’(E ﬂ(g 4g ) |.7:£) m-

By (76), we have &y 4 N E; = Ny_y9,(Ep gt s N (8:’4,3’q)"). Since (&, 4¢ , N
(5;‘ 4t q)C) is Fy-measurable (and thus is ]-'é +1—measurable), we deduce that

(recalling ar(a)> > 1)
P(Epn.g NES) <CNTO.

By (74), we have P(£,) < CN~°. Combined with the preceding display, this
completes the proof of the lemma. O

Define &, y to be an event measurable with respect to the Gaussian field by
Eov = oV H) janr — (oY 7) jay- = N7 (78)

Since £, n C Ugep;E0,N,q With § = N73/3, we get from Lemma 3.18 that
P&, n) = O(N3). Thus,
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E(((T(f\N’+)MAN,+ — <O—(5\N’_>MAN’—)
<2PE ) + Eler (0,
— O(N73). (79)

N G V)

Remark 3.19 In Lemma 3.18, we work with &, y 4 other than &, y, for the
reason that we do not have the property that £, y occurs if and only if Ag,, |
is in a certain interval (but the property holds for &, n ).

In order to prove Theorem 1.1, we will consider a monotone coupling of
wAV-E and consider CAY = v € Ay : 0V > oM7), We wish to have
that {o € C*¥} occurs only if o is connected to Ay in C*V. However, as
we have seen in Remark 3.8, this property does not hold for all monotone
couplings of *¥-F (For instance if we build an adaptive admissible coupling
by first sampling the spin at o and then the rest of the spins, then it is possible
to get a configuration where the spin disagrees at o but there exists a contour
surrounding o where all spins agree on this contour). In order to address this
issue, we will construct an adaptive admissible coupling 74, such that this
percolation property holds. Our construction is similar to that in Sect. 3.3.1 in
a way that we explore C*¥ in a breadth first search order. But our construction
now is much simpler as we no longer need to consider multiple phases.

By Definition 3.9, in order to define 7 5 , we only need to specify the order of
vertices in which we sample the spins, as described as follows. Throughout the
procedure, we let C*¥ be the collection of vertices v which have been sampled
and satisfy oMV S GANT Weset Ag = dAy and fork = 0, 1,2, ..., we
inductively employ the following procedure (which we refer to as stage).

o Atstage k + 1, first set Agy1 = 0. If Ax = ¥, we sample the unexplored
vertices in Ay in an (arbitrary) prefixed order and stop our procedure.
Otherwise, we explore all the unexplored neighbors of A; (in a certain
arbitrary prefixed order) and sample the spins at these vertices.

e For each newly sampled vertex, if it is in C*V then we add it to Az .

Lemma 3.20 Under the coupling mp,, 0 € CAN only if o is connected to
aAN in CAN.

Proof Let k, be the first k such that Ay = #. If o has been explored by the
end of Stage (k, — 1), we see that o is connected to d A i in CAN, Otherwise,
denote Vi, the collection of explored vertices at the end of Stage (k). If 0 was
explored in Stage ki, then o ¢ CA¥ (since Ay, = @). If 0 was not explored by
the end of Stage k*, we see that o*V- and o V>~ agree on BVk‘;, and thus
they will have to agree with each other on ch* by Lemma 3.11 (this is because

alf\ ¥* and o ¥+~ have the same conditional marginal forall v € ch* and thus
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have to agree with each other in an admissible coupling). This in particular
implies that o ¢ C*V, completing the proof of the lemma. O

Proof of Theorem 1.1: T > 0 Consider the adaptive admissible coupling

- We will use the fact that P ® 74, (v € CANY = %E((alf\N’Jr)ﬂ

(alf\N’_)HAN,_) for all v € Ay. Let N9 = No(e, B) be chosen later. For
any box B, recall that B'¥° is the box concentric with B of doubled
side length. For B € B(N, Ny), we say B is open if CAN N B # (. In
order to analyze this percolation process, we say a box B is exceptional if

large large __ —1/2 . .
gl ’+)M81arge_+ — (B ) paree ) = Ny /% (so exceptional is a

Ay, + —

property measurable with respect to {h, : v € B'3}). By (79) and mono-
tonicity,

P(B is exceptional)
Blarge’_

172 large —1/2
SN2 Y B0 ) pne = (0007 e ) = ONG ).

veB

Recall Definition 2.9. We see that the exceptional boxes on B(N, Ng) form
a percolation process which satisfies the (N, Ny, 4, p)-condition with p =
O(N, 1/ 2). In addition, for any box B which is not exceptional, denoting by
Fp the o-field generated by spin configurations outside B¢, we see from
monotonicity that

Ay (B isopen | Fp)

Blarge Blarge _ —
< Z((UU ’+>MBlarge‘+ — <Gv ’ >MBlarge.7) = O(NO
veEB

1/2

).

Altogether, this implies that the collection of open boxes forms a percolation
process which also satisfies the (N, Ny, 4, p)-condition with p = O (N, l 2).
By Lemma 3.20, in order for 0 € C*V, it is necessary that there exists an open
lattice animal on B € B(N, Ny) with size at least %N()' Now, choosing Ny
sufficiently large (so that p is sufficiently small) and applying Lemma 2.10
yields that

PQ (o€ CAMVy < le™N  fore = c(e, B) > 0,
completing the proof of the theorem. O
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