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Abstract 

Many economic decisions, such as choosing between spending and saving, 

or deciding whether to pursue education or enter the labor force, are driven by 

time preferences. It has been well-documented in behavioral research that peo-

ple’s intertemporal choices are malleable and can be easily influenced by various 

factors. Despite the growing issue of noise pollution in modern society and fre-

quent exposure to noise in daily life, little research has been done to investigate 

the effect of noise on intertemporal decision-making. To address this research 

gap, I conduct laboratory experiments using a between-subject design, where 

participants completed the Convex Time Budget tasks while being exposed to 

different levels of pre-recorded traffic noise. Structural estimation results indi-

cate that exposure to traffic noise significantly reduces present bias (larger β), 

but has no effect on discounting (δ). These findings suggest that ambient noise 

can play an important role in shaping intertemporal decisions. I also discuss the 

potential explanations for the observed effects, policy implications, and future 

research directions. 

Key Words: Time preferences, Environmental pollution, Decision-making, Convex time 

budget, Lab experiment 
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Preface 
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and conducted a series of lab experiments to explore this area further. Through this 

research, I hope to contribute to a better understanding of the factors that influence 

intertemporal decision-making, offer potential insights for environmental policy, and 

inspire further research on this topic. 
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1 Introduction 

In modern society, noise pollution is a ubiquitous environmental stressor that has 

been found to have adverse impacts on public health. Researchers estimated that 

approximately 104 million individuals in 2013 were at risk of noise-induced hearing 

loss as a result of their annual LEQ(24) levels surpassing 70 dBA (Hammer et al., 

2014). The World Health Organization has also ranked acoustic pollution among the 

greatest stressors affecting public health (Organization et al., 2011). Traffic noise 

is a major contributor to this issue, especially in urban areas, and its detrimental 

effects on health and well-being, such as sleep disturbance, stress, and cardiovascular 

disease, have also been widely documented in the existing literature (Babisch et al., 

2000; Basner et al., 2014; Fyhri & Aasvang, 2010; Recio et al., 2016). 

Over the course of several decades, researchers in the fields of psychology and 

environmental sciences have extensively investigated the effects of noise on human 

behavior. Studies dating back to the last century demonstrate that exposure to high 

levels of white noise can reduce helping behavior in laboratory settings (Mathews 

& Canon, 1975). Furthermore, noise has been associated with reduced frustration 

tolerance and decreased performance efficiency, even after the noise has stopped (Glass 

et al., 1969). Until recently, there has been limited research into the impact of noise 

on economic decision-making, with a primary focus on its effects on risk-taking. For 

example, recent research suggests that exposure to noise stressors containing speech 

can lead to greater risk aversion, particularly among female participants (Syndicus 

et al., 2018). Noise has also been studied in the field of public economics, with 

research indicating that background noise is associated with higher rates of violent 

crime (Hener, 2022). 

Despite the growing body of literature on the effects of noise on behavior, there 
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remains a gap in research regarding the influence of traffic noise on intertemporal 

decision-making. Although intertemporal preferences are generally considered stable 

in economic literature, studies have shown that they can be influenced by various 

factors and contextual manipulations, which can be categorized into framing effects 

and incidental affective effects (Lempert & Phelps, 2016). Recent research has shown 

that when evaluating alternatives, reference points can have a significant impact on 

intertemporal choices. This phenomenon is known as the framing effect (Loewenstein, 

1988). According to Kahneman and Tversky’s Prospect Theory (Kahneman & Tver-

sky, 2013), many of these framing effects can be explained by shifts in the points of 

reference used to evaluate prospects. Incidental affective effects, on the other hand, 

can also influence intertemporal choices and typically include exposure to affective 

stimuli, mood, and stress (Lempert & Phelps, 2016). Noise can be broadly classified 

into the second category because it can induce a range of emotional responses, such 

as frustration, anxiety, and annoyance, potentially affecting intertemporal decision-

making. 

Studying the effect of noise on intertemporal decision-making is critical for sev-

eral reasons. Firstly, as highlighted by Becker and Mulligan (1997), investment in 

patience is a key driver of long-term economic growth. Therefore, if traffic noise does 

impact how individuals make intertemporal choices, policymakers can leverage this 

knowledge to develop effective environmental policies that promote sustainable long-

term economic growth. Secondly, intertemporal decision-making can have significant 

implications for individual life quality, affecting health, financial situations, and ed-

ucation choices. For instance, intertemporal decisions related to saving, investment, 

and retirement planning can result in long-term financial consequences (Bernheim 

et al., 2001; Finke & Huston, 2013), and intertemporal decisions related to health, 

such as exercise and smoking habits, can significantly affect long-term health out-
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comes (Chao et al., 2009; Herberholz, 2020; Lawless et al., 2013). Moreover, choices 

related to education, such as whether to pursue higher education or directly enter the 

labor force, can have lasting impacts on an individual’s career and earning potential 

(Card, 1999; Tamborini et al., 2015). Studying the factors that influence intertem-

poral choices can therefore help policymakers and researchers design interventions 

or nudges that encourage individuals to make better choices, leading to improved 

long-term outcomes and ultimately enhancing their overall quality of life. 

This study, therefore, aims to bridge the aforementioned research gap by conduct-

ing laboratory experiments. To the best of my knowledge, this is the first study that 

attempts to establish a link between exposure to noise and intertemporal decision-

making. The paper is structured as follows: Section 2 provides a brief summary of the 

existing literature and hypothesis development. Section 3 outlines the experimental 

design. The model specification and parameter estimation approach are introduced 

in Section 4. The results of the study are presented in Section 5. The paper concludes 

with a summary of the findings, limitations, and future directions in Section 6. 

2 Literature Review and Hypothesis Development 

In this section, I will present a summary of previous research on how environmental 

change and stimuli influence behavior and decision-making, with a specific focus on 

time preferences. I will also discuss possible mechanisms through which environmental 

noise can influence intertemporal choices. 

In terms of significant environmental changes, previous studies have investigated 

how encountering drastic environmental harm, such as natural disasters, affects time 

preferences. However, the existing literature does not provide a consistent conclusion 

on the effects. In a study by Akesaka (2019), panel survey data revealed that there 
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is an increase in present bias after the Great East Japan Earthquake but no effect on 

discounting, and the increase continued to persist even five years after the earthquake. 

However, in another study, it was found that people who experienced the 2004 tsunami 

in Thailand discount the future approximately 22% more than those who did not 

experience it (Cassar et al., 2017). While these studies generally suggest that exposure 

to severe disasters leads to decreased patience, Callen (2015) found that exposure to 

the Indian Ocean Earthquake increases patience in a sample of Sri Lankan wage 

workers. 

Although the exact mechanism through which life-threatening events can have 

a long-lasting effect on individual preferences is not yet fully understood, research 

suggests that in the short term, when confronted with imminent physical danger or 

stimuli, the activation of the human body’s sympathetic nervous system biologically 

induces the "fight-or-flight" response (Cannon, 1925). In this process, the sympa-

thetic nervous system can facilitate the release of certain hormones, including cat-

echolamines (e.g., adrenaline and noradrenaline) and glucocorticoids (e.g., cortisol), 

which activate the body’s stress response, leading to various physiological changes, 

such as increased heart rate, elevated blood pressure, and narrowed blood vessels. 

Studies in the fields of environmental science and psychology found that such 

activation of the sympathetic nervous system is not exclusive to life-threatening sit-

uations, but can also be triggered by everyday environmental stimuli, such as traffic 

noise. This is supported by the findings of Babisch et al. (2000), who found that in-

dividuals who sleep in bedrooms facing busy streets have significantly higher levels of 

noradrenaline in their urine compared to those who sleep in quieter areas. Similarly, 

a study by Maschke et al. (2002) showed that nocturnal electroacoustically simu-

lated aircraft noise in apartments resulted in higher levels of cortisol in men. These 

studies all suggest that noise exposure can prompt the secretion of stress hormones 
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and activate the sympathetic nervous system, which is immediate and transient in 

nature (Miki et al., 1998). The increased level of stress is found to be associated 

with aggressive behaviors, reduced self-control, and violence. Using the fMRI scans, 

Maier et al. (2015) found that stress reduced connectivity between the ventromedial 

prefrontal cortex and dorsolateral prefrontal cortex, regions known to be involved in 

self-control. This suggests that stress could result in impatience, causing individuals 

to favor immediate rewards over delayed ones. Based on these findings, it is reason-

able to suggest that exposure to traffic noise, an acute stressor, may stimulate stress 

and physiological responses in individuals, inducing greater impatience and a more 

intuitive decision-making style. 

Another potential mechanism for the contradictory hypothesis that people tend 

to be more patient when exposed to noise stems from research that suggests that 

exposure to noise increases the mental effort required to complete a task (Choi et al., 

2014; Szalma & Hancock, 2011; Tafalla & Evans, 1997). This increased cognitive 

load prompts individuals to exert more mental and cognitive effort to deal with their 

surroundings, resulting in greater attentional control, which could enable individu-

als to resist the temptation of immediate rewards in favor of delayed ones (Keren 

et al., 1977; Kujala & Brattico, 2009). In this process, the increased cognitive load 

could possibly lead to cognitive overshooting, where individuals overestimate the ef-

fort required to perform a task. Consequently, individuals may exhibit an excessively 

patient decision-making pattern and tend to choose delayed over immediate gratifica-

tion. Therefore, it is also plausible to hypothesize that individuals’ levels of patience 

could increase when exposed to traffic noise. Therefore, the direction of the hypothe-

sis regarding the effects of noise on time preferences is thus unclear and may depend 

on the intensity and characteristics of the noise. Given the relatively low intensity 

of the pre-recorded traffic noise to which participants are exposed in the laboratory 
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settings, it is reasonable to expect that the increased cognitive load and excessive 

mental effort resulting from noise exposure would lead to greater patience and a more 

deliberate decision-making style. 

3 Experimental Design and Procedure 

IRB approval is obtained for this study.1 . The oTree platform is used to implement 

the experimental interface, which allows dynamic text adjustments and volume visu-

alization through the use of Javascript. The Heroku server is utilized to present the 

interfaces to participants. Instructions are converted to audio format using Microsoft 

Azure, and all participants use Sennheiser headphones of the same model (HD650) 

during the experiment. Each session lasts for around 30 minutes. The study employs 

a between-subject design and includes four different treatments: 

Treatment A (Quiet): Reduced Traffic Noise 

Treatment B (Noisy): Traffic Noise 

Treatment C (Adaptation): Adaptation + Traffic Noise 

Treatment D (Baseline): Reduced Traffic Noise + No WTP section 

Treatments A, B, C, and D differ only in the following ways: 

• Only participants in treatment C are exposed to the Adaptation Phase at the 

beginning of the experimental session. 

• Participants in Treatments A and Treatment D are exposed to a lower level of 

noise (around 30 to 35 dB) when completing the Convex Time Budget, and 

participants in Treatment B and Treatment C are both exposed to the same 

level of noise (around 70 to 75 dB), which is higher than that in treatment A. 
1NYU Shanghai IRB approval number: 2022-052. 
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• Participants undergo an identical process as Treatment B, with the exception 

that they are not asked to indicate their Willingness to Pay. During the count 

zero tasks, they are therefore exposed to the minimal level of noise. 

• Participants experience the same procedure as those in Treatment B, except 

that they are not asked to complete the Willingness to Pay section. In the 

count zero tasks, they are therefore exposed to the minimal level of noise. 

Treatment D was conducted as a follow-up treatment after treatments A, B, and 

C. In addition, throughout the experiment, task compensation is referred to as "ex-

perimental coins", and upon completion of the experiment, these coins are converted 

into RMB at a currency ratio of 1:100. In other words, for every 100 coins earned by 

participants, they will receive a payment of Y1. Figure 1 displays the flowchart that 

illustrates the process, and the following sections provide a more detailed description 

of the various stages of the experimental session. 

Randomized Follow-up 

Treatment A 
(Quiet) 

Treatment B 
(Noisy) 

Treatment C 
(Adaptation) 

Treatment D 
(Baseline) 

Recipe Task 
(Adaptation) 

CTB Task 
(Loud) 

CTB Task 
(Quiet) 

CTB Task 
(Loud) 

Willingness to 
Pay 

Count-zero 
(Selected volume) 

Survey 

CTB Task 
(Quiet) 

Count-zero 
(Quiet) 

Survey 

Figure 1: Experimental Procedure 
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3.1 Tasks 

3.1.1 Adaptation Phase 

Participants who are in treatment C are first presented with an audio clip detailing 

a recipe. To incentivize participants to keep their headphones on, upon listening 

to the audio clip, participants are asked to identify what dish the clip refers to and 

rewarded Y5 for answering correctly. The design of this section is intended to serve as 

an adaptation phase for participants prior to being exposed to traffic noise during the 

primary task. The aim is to investigate whether the adaption of noise will influence 

subsequent intertemporal choices. 

3.1.2 Convex Time Budget 

Then I elicit the time preferences of participants in all treatments. To measure time 

preferences, I use the Convex Time Budget (CTB) choice sets developed by Andreoni 

and Sprenger (Andreoni & Sprenger, 2012). Unlike other methods that estimate dis-

counting, utility curvature, and present bias separately, CTB allows for simultaneous 

estimation of all three variables. This makes it a widely used and suitable measure 

for this study, as it has been found to improve out-of-sample predictive accuracy and 

prevent unrealistically high discounting estimates (Andreoni et al., 2015; Andreoni & 

Sprenger, 2012). 

In the CTB tasks, participants allocate payments between two time periods: (i) 

today versus 5 weeks later, (ii) today versus 9 weeks later, (iii) 5 weeks later versus 10 

weeks later, and (iv) 5 weeks later versus 14 weeks later. Participants face a budget 

constraint when allocating payments across the two periods t and t + k: (1 + r)ct + 

ct+k = Y , where the budget is fixed at Y = Y50. In addition, five price ratios are 

implemented in each choice set, summarized by P ∈ {1.05, 1.11, 1.18, 1.25, 1.43, 1.82} 
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Choice set First payment (t) Delay (k) t+k Price ratio (P) 
(i) 0 35 35 1.05, 1.11, 1.18, 1.25, 1.43, 1.82 
(ii) 0 63 63 1.00, 1.05, 1.18, 1.33, 1.67, 2.22 
(iii) 35 35 70 1.05, 1.11, 1.18, 1.25, 1.43, 1.82 
(iv) 35 63 98 1.00, 1.05, 1.18, 1.33, 1.67, 2.22 

Table 1: Parameters Used in the Convex Time Budget Tasks 

for set (i) and set(iii), and P ∈ {1.00, 1.05, 1.18, 1.33, 1.67, 2.22} for set (ii) and set 

(iv). These values were selected to be consistent with prior literature (e.g. Aycinena 

& Rentschler, 2018; Lindner & Rose, 2017). Therefore, each participant makes 24 

choices in total, and Table 1 is a summary of the first payment dates (t), delay (k), 

and price ratios (P) that are used in the experiment. Figure 2 presents a screenshot 

of a sample CTB choice set (where t = 0 and k = 35). 

Figure 2: Sample CTB Choice Set 
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3.1.3 Willingness To Pay 

In this part, I measure participants’ willingness to pay for reducing noise. A slider 

tool is provided to the participants, allowing them to indicate the amount of a fixed 

budget (Y10) they are willing to allocate towards reducing the noise levels in their 

headphones. Each position of the slider corresponds to a predetermined noise level, 

with a negative association between the noise level and the amount of money required 

for reduction. Moreover, the slider positions exhibit decreasing marginal returns, 

which means that it would cost more to reduce a relatively smaller level of noise 

compared to a larger one. This is designed to align with the real-world relationship 

between reducing noise levels and the associated engineering costs (Bowes et al., 

2006). The experimental interface is displayed in Figure 3. It is noteworthy that 

as participants slide the slider, the volume in their headphones, the points needed 

to pay shown on the screen, and the volume circle displayed all dynamically adjust 

accordingly. 

Figure 3: Willingness to Pay Task 
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3.1.4 Real Effort Task 

Following the WTP task, participants proceed to complete a real-effort task while 

wearing headphones with the noise level set to their chosen level. Specifically, they 

are instructed to count the number of 0s in matrices that contained both 0s and 1s. 

Their earnings in this section are based on their performance in the counting task, 

whereby they received a payment of Y1 for each matrix that is counted correctly. 

Figure 4 is a screenshot of the task interface. 

Figure 4: Real Effort Task 

3.1.5 Survey 

At the end of the experiment, participants are asked to voluntarily report some of 

their demographic information, including gender, age, nationality, major, birthplace, 

and location of high school. 

3.2 Recruitment and Sample 

Participants are recruited through posters put up on public bulletin boards on the 

NYU Shanghai campus, messages sent to previous participants in the SONA system, 
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as well as electronic ads posted on social media. Experimental sessions are conducted 

in the NYU Shanghai Behavior & Experimental Economics Laboratory. A total of 

125 students participated in this study. Since the participants were asked to provide 

demographic information voluntarily, it should be noted that the total number of 

responses for each category may not necessarily sum up to 125. 

The age of the participants ranges from 18 to 24, with an average age of 19.4876. 

Out of the participants who provided their demographic information, 47 were male 

and 75 were female. Furthermore, 77 of the students were Chinese and 42 were 

international students. Regarding the treatment assignments, 37 participants were 

assigned to Treatment A, 36 to Treatment B, 26 to Treatment C, and 26 to Treatment 

D. 

4 Model Specification and Estimation Strategy 

To obtain estimates of participants’ time preferences, in the upcoming analysis, I 

follow the parametric assumptions by Andreoni and Sprenger (2012). Specifically, I 

assume that subjects’ per-period preferences are stationary and do not change over 

time. Furthermore, participants’ preferences are also characterized by Constant Rel-

ative Risk Aversion (CRRA), where u(xt) = xα
t and the coefficient of relative risk 

aversion is given by R(x) = −xu ′′(x) 
u ′(x) = 1 − α, which is a constant. To account for the 

commonly observed dynamic inconsistencies in discounting behavior, the utility func-

tion follows the quasi-hyperbolic form by incorporating a parameter β that stands 

for present bias (Laibson, 1997; O’Donoghue & Rabin, 1999). Thus, preferences are 

defined as follows: 

U(ct, ct+k) = c α 
t + β t0 δ k c α 

t+k (1) 
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where ct and ct+k are amounts received at the earlier and later date, respectively. 

t0 is a time indicator with t0 = 1 if the sooner payment is received at present, and 

0 otherwise. Y stands for future value budget. k is the delay length of the later 

payment. α is the curvature of the utility curve function. δ is the discount factor, 

and β captures present bias. 

In the experiment, subjects face the following budget constraint: 

(1 + r)ct + ct+k = Y (2) 

A participant maximizes utility (1) subject to the budget constraint (2). In this 

framework, the Marginal Rate of Substitution (MRS) is given by: 

MRS = 
∂U/∂ct 
∂U/∂ct+k 

= 
αc α−1 

t 

βt0 δkαc α−1 
t+k 

= 
c α−1 
t 

βt0 δkc α−1 
t+k 

(3) 

The price ratio can be represented by P = 1 + r, and the standard Euler equation 

can then be derived since: 

MRS = 
c α−1 
t 

βt0 δkc α−1 
t+k 

= P (4) 

Solving for ct+k in the budget constraint (2): 

ct+k = Y − (1 + r)ct = Y − Pct (5) 

and substituting into equation (4), we get: 

P (β t0 δ k )(Y − Pct)
α−1 = ct 

α−1 (6) 

Rearranging and simplifying gives: 
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ct = 
Y (βt0 δkP )( 

1 
α−1 ) 

1 + P (βt0 δkP )( 
1 

α−1 ) 
(7) 

Expression (7) serves as the foundation of the Nonlinear Least Squares estima-

tion, without adding the effect of noise or demographic features. Specifically, in the 

experimental design, Y is fixed at 50, and P s are predetermined for each scenario as 

well. Participants’ choices provide the values of ct, and the three parameters α, β, 

and δ are to be estimated. 

To account for the potential impact of noise and demographic characteristics on 

time preferences, I specify the preference parameters α, β, and δ in the linear forms 

below: 

α = α0 + α1 ∗ noise + α2 ∗ gender + α3 ∗ Chinese + α4 ∗ age (8) 

β = β0 + β1 ∗ noise + β2 ∗ gender + β3 ∗ Chinese + β4 ∗ age (9) 

δ = δ0 + δ1 ∗ noise + δ2 ∗ gender + δ3 ∗ Chinese + δ4 ∗ age (10) 

Here, α0, β0, and δ0 represent the baseline values of the preference parameters, and 

α1, α2, α3, β1, β2, β3, β4, δ1, δ2, δ3, δ4 are coefficients that capture the potential effects 

of noise and demographic characteristics on the preference parameters. Furthermore, 

noisy, gender, and Chinese are three dummy variables, where noise = 1 indicates 

that the participant is assigned to the noisy treatment, gender = 1 indicates that 

the participant is female, and Chinese = 1 indicates that the participant is Chinese. 

Additionally, we have a numerical variable age. By incorporating equations (8), 

(9), and (10) into equation (7), ct becomes a composite function of the preference 
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parameters and noise and demographic characteristics. The estimation procedure

focuses on simultaneously estimating the different αs, βs, and δs using Nonlinear

Least Squares estimation.

5 Results

5.1 Choice Overview

Figure 5 presents the overview of the aggregate data from the CTB tasks. It reports

the mean budget allocation towards earlier payment dates, at various values of P =

(1 + r) from the equation Pct + ct+k = Y , for the recruited sample of 125 subjects

in all treatments. The left section of the graph shows two sets of data for payments

that are delayed by five weeks, whereas the right section demonstrates the data sets

for payments delayed by nine weeks.
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Figure 5: Comparison of Mean Budget Allocated to Earlier Date Across Scenarios

It is worth noting as shown in Figure 5, as the price ratio (1+r) increases, there is

2
1



a decreasing tendency in the average allocation to the sooner payment, in accordance 

with the law of demand. This suggests that the participants generally understand 

the intertemporal trade-offs involved in the CTB tasks. This pattern is in line with 

previous studies (Andreoni & Sprenger, 2012; Augenblick et al., 2015; Lindner & 

Rose, 2017). 

I then conducted individual-level Non-linear least squares estimation using expres-

sion (7) without including any controls. The distributions of the estimated betas and 

deltas are illustrated in Figure 6. Since six data points fail to converge during the 

estimation process and two participants’ responses do not show enough variation to 

be estimated, they are excluded from this part of the analysis. 
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Figure 6: Distributions of estimated parameters 

Out of the 117 data points that converged, 35 participants (29.9%) display present-

biased behavior, which I define as having an estimated β value strictly less than 0.99 

(as in Augenblick et al., 2015). 

5.2 Results 

5.2.1 Main Analysis: Noise on Intertemporal Decision-making 

Next, I turn to the main analysis of how exposure to noise affects intertemporal 

decision-making. For this part of the analysis, I exclude the data from Treatment 

C since participants went through an adaptation phase before completing the CTB 
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tasks, which could potentially confound the pure treatment effect. Additionally, I 

consider Treatment D, the baseline follow-up treatment group, as a quiet group too 

since participants were also exposed to reduced traffic noise prior to completing the 

CTB tasks. To ensure the validity of this grouping, I conducted statistical tests, 

which revealed no significant differences in the distributions of the estimated values 

of α (t-test,p-value = 0.3272), β (t-test, p-value = 0.8928), and δ (t-test, p-value = 

0.6751) between Treatment A and Treatment D. Consequently, I group Treatment 

A and D as the quiet group, while Treatment B is the noisy group. Figure 7 illus-

trates the comparison of mean budget allocation towards earlier payment dates across 

treatments. 
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Figure 7: Comparison of Mean Budget Allocated to Earlier Date Across Treatments 

Table 2 reports the estimation results based on equations (7), (8), (9), and (10). 

The columns below present results obtained by considering preferences alone, by 

incorporating the effect of noise into the parameters, and by incorporating both the 

noise and different demographic variables into the parameters. Robust standard errors 
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are reported in parentheses. The standard errors are clustered at the individual level. 

Columns (3), (4), and (5) have 6 clusters and 144 observations fewer than Columns 

(1) and (2) because 6 participants didn’t provide their demographic information. 

I first compare the performance of different models. According to Spiess and 

Neumeyer (2010), using R2 obtained from a nonlinear fit is not an ideal measure be-

cause, even in cases with very poor models, it is hardly affected beyond the third or 

fourth decimal place. Instead, both Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) perform significantly better. From the result table, es-

timations in Columns (4) and (5) have the lowest BIC and AIC, respectively, which 

indicates that they provide the best fit for the model. The results from these two 

columns imply that after controlling for demographic variables, the coefficient of 

Noise_on_β is positive and significant, suggesting that exposure to noise leads to 

a 0.054 increase in β, when compared to the baseline parameter β̂0. However, noise 

has no significant effect on the utility curvature α or discounting δ in all of the spec-

ification checks. However, it should be noted that this effect is not very robust as 

it only remains significant in Columns (4) and (5), when controlling for both gender 

and nationality. This could potentially be attributed to the relatively small size of 

the sample used in the study. 

In summary, the findings suggest that exposure to noise leads to a significant 

reduction in present bias, with an average increase of approximately 0.054 in β, hold-

ing other factors constant. These outcomes remain relatively robust after including 

control variables in several econometric specification checks. 

5.2.2 Mechanism: Noise, WTP, and Performance 

The observed decrease in present bias due to exposure to noise is in line with the 

excessive mental effort hypothesis mentioned in Section 2. That is, participants might 
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(1) (2) (3) (4) (5) 

α̂0 0.874∗∗∗ 0.865∗∗ 0.839∗∗∗ 0.817∗∗∗ 0.534∗∗∗ 

(0.012) (0.017) (0.025) (0.031) (0.147) 

β̂0 1.032∗∗∗ 1.025∗∗∗ 1.026∗∗∗ 1.074∗∗∗ 1.220∗∗∗ 

(0.012) (0.015) (0.019) (0.031) (0.153) 

δ̂0 0.998∗∗∗ 0.998∗∗∗ 0.999∗∗∗ 0.998∗∗∗ 0.996∗∗∗ 

(0.012) (0.000) (0.000) (0.001) (0.004) 

Noise_on_α – 0.025 0.002 −0.038 −0.030 
(0.023) (0.025) (0.024) (0.027) 

Noise_on_β – 0.018 0.033 0.054∗∗ 0.054∗∗ 

(0.024) (0.027) (0.026) (0.025) 

Noise_on_δ – 0.000 0.000 −0.002 0.000 
(0.001) (0.001) (0.001) (0.001) 

Gender No No Yes Yes Yes 
Chinese No No No Yes Yes 
Age No No No No Yes 

R2 0.579 0.582 0.590 0.598 0.600 
Adjusted R2 0.575 0.578 0.585 0.593 0.596 
AIC 41392.24 41385.04 38865.91 38824.93 38821.3 
BIC 41409.56 41419.68 38917.31 38893.45 38906.96 
Observations 2,376 2,376 2,232 2,232 2,232 
Clusters 99 99 93 93 93 

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 
Robust standard errors in parentheses. 

Table 2: Estimation Results 
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overestimate the cognitive effort required to deal with their environment and resist 

traffic noise in their headphones. The validity of this hypothesis can be supported if 

the level of noise is shown to have only a moderate impact on cognitive performance, 

leading to cognitive overshoot. Below are several data patterns from the experiment 

that support this, indicating that the recorded noise used in this study is relatively 

mild and does not significantly affect cognitive performance. 

Noise and Performance: First, I examine how the level of noise affects partic-

ipants’ performance in the count-zero tasks. 41 participants’ performances were not 

properly recorded due to a programming error, and therefore, they are excluded from 

the analysis. Moreover, two participants used a keyboard shortcut to search for the 

number of zeros during the experiment, resulting in an unexpectedly high number of 

correct matrices, which are also excluded from the analysis. After excluding these 

data points, there are 22 remaining data points for Treatment A, 17 for Treatment 

B, 17 for Treatment C, and 18 for Treatment D. 

First, I pool the data from all treatments to conduct the analysis. The noise 

volume was standardized and ranges from 0.03 to 1. The lowest level of 0.03 cor-

responded to the level of noise in the CTB section of the Quiet Treatment. After 

controlling for demographic characteristics, the analysis showed that the effect of vol-

ume on the number of correctly counted matrices was not statistically significant, 

despite the reasonable direction of the sign (coefficient = 0.288, p-value = 0.872). 

Pooling the data from all treatments may have the issue of endogeneity since par-

ticipants self-selected the level of noise in Treatment A, B, and C, and they might 

inherently possess different abilities to resist noise. To address the issue, I specifi-

cally compared participants’ cognitive performance in Treatment D (Baseline) and 

the non-baseline treatments. When performing the count-zero tasks, participants in 

Treatment D (Baseline) were automatically placed in the environment where volume 
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= 0.03, which is the lowest level. The statistical test yields broadly similar results 

(t-test, p-value=0.175), indicating that the increase in the level of noise used in this 

experiment has no significant effect on participants’ cognitive performance. 

Adaptation Phase and Intertemporal Choices: Next, I examine whether 

an adaptation phase can mitigate the impact of noise on participants’ intertemporal 

decision-making. If no such effect is observed, it may also suggest that the volume 

level in this experiment used is too mild to elicit an observable adaptation effect. To 

test this, I compare the distributions of β and δ in Treatment C (Adaptation) with 

those in Treatment A + D (Quiet). As expected, the results show that there is no 

statistically significant effect of the adaptation phase on participants’ estimated β (t-

test, p-value = 0.373) or δ (t-test, p-value = 0.327). Comparison between Treatment 

C (Adaptation) and Treatment B (Noisy) provides similar results; there is no statis-

tically significant effect of the adaptation phase on participants’ estimated β (t-test, 

p-value = 0.611) or δ (t-test, p-value = 0.660). These results support the hypothesis 

that the audio used in this experiment is too mild to trigger an observable adaptation 

effect. 

Willingness to Pay and Performance: Lastly, I explored the relationship be-

tween the amount participants paid for noise reduction and their performance in the 

count-zero task. For data in Treatments A, B, and C, controlling for characteristics, 

there is no significant effect of the number of coins paid on the number of correct 

matrices solved (coefficient = 0.001, p-value = 0.706). This suggests that the par-

ticipants in the experiment may not have a clear understanding of how much noise 

affects their performance in the real-effort task, which supports the hypothesized cog-

nitive overshoot. The non-significant result could be attributed to the possibility that 

participants who perceived themselves as more susceptible to noise may have offered 

to pay a higher amount, leading to this observed data pattern. Thus, the conclusion 
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cannot be considered definitive. 

To summarize, the results mentioned above provide some evidence to support the 

conjecture that the level of noise utilized in the experiment is mild and has little 

impact on participants’ cognitive performance. However, participants may not have 

a thorough understanding of the effect of noise. This lack of understanding may lead 

to cognitive overshoot, potentially resulting in an overestimation of mental effort and 

a decision-making style that is overly patient. 

6 Conclusion 

This study employs laboratory experiments to address the novel research question 

of how exposure to traffic noise affects intertemporal decision-making. Results sug-

gest that exposure to traffic noise significantly reduces present bias (larger β), but 

has no effect on utility curvature α or discounting δ. This finding holds important 

policy implications as it provides a simple and low-cost intervention for improving 

intertemporal decision-making and reducing impulsive behavior. For instance, noise 

exposure interventions could be used in financial education programs to encourage 

long-term savings. Additionally, policymakers could consider utilizing noise exposure 

in public spaces where impulsive behavior is a significant issue, such as preventing 

smoking or violent behavior, to encourage individuals to make more informed and 

rational decisions. 

While this study sheds light on the potential effects of noise exposure on intertem-

poral decision-making, I have also identified some limitations of this study that might 

guide future research. First, the results of this study may not be very robust, and 

increasing the sample size could provide more reliable findings. Second, the noise 

level used in the study was only mild and close to the borderline of safe decibel levels, 
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which may limit the generalizability of our results. Future research could consider 

using more extreme levels of noise to explore the effects further and whether partic-

ipants’ behaviors alter the direction when exposed to different levels of traffic noise. 

Third, the hypothesis of cognitive overshoot is rather conjectural, and future research 

could measure the precise mental effort exerted to validate this hypothesis. Finally, 

while our study only focuses on the CTB measure of time preferences, other measures 

could be utilized in future research to check the robustness of the current findings. 

Taken together, these limitations imply that it is important to exercise caution when 

attempting to generalize the findings of this study, and further research is necessary 

before drawing more comprehensive conclusions on the mechanism through which 

traffic noise impacts intertemporal decision-making. 
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