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1 Abstract

Real Time Bidding (RTB) Strategy is playing a more and more important role in digi-

tal advertising, in which it helps to win expected numbers of advertising campaigns with a

minimum cost for Demand Side Platforms (DSP). Every impression offered through Sell

Side Platforms (SSP), can be regarded as a new type of supply since it is unpredictable

and unable to be inventoried. Therefore, the core of my thesis would be, how should we

build a mathematical optimization model to better catch every impression with the lowest

cost, given that the supply is uncertain and cannot be stored. The whole thesis would

come with a general model with factors in both dimensions and depths, then focuses on a

relaxation on certain constraints, and finally find out the solutions based on the previous

analysis by setting bounds for both the cost and the numbers of impressions. Moreover,

we will define some variables which have certain realistic meanings to further interpret

the results extracted from our model. Some typical mathematical domain knowledge such

as theory of probabilities, statistics, convex optimization, etc. will be applied to solve the

research questions.
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3 Introduction

Nowadays, many applications on mobile phones will show the advertisement banners

for several seconds after users open it. This is a new kind of business which has appeared

recently. Here, I am going to illustrate the players who are engaging in this game. First of

all, the market, where all the spaces for advertisement display are bought or sold, is called

the Ad Exchange. Usually, Sell Side Platforms (SSP), the supplier of the spaces such as

the owners of the mobile apps, are responsible for arranging the spaces in a proper way

such that every space can be sold efficiently. Similarly as what happens on the supply

side, the advertiser such as companies who create ads to promote their goods or services,

will find a Demand Side Platform (DSP) to help them fulfill their advertising campaign

goals in a certain period of time. For example, company A may pay a DSP $50 to win

1000 ads spaces in one week. Certainly, in real life business, some more details will be

given out, such as the target customer segmentation, the time periods or the regions the

company prefer, etc.

The opportunity to display an ad on an App is referred to as an impression. Until

recently, accompanied with the appearance of mobile Ad Exchange, the supply of im-

pressions on Apps is becoming a commodity. Moreover, there are no longer contracts

through a long-time period and each opportunity to display an ad is auctioned off on a

mobile Ad Exchange. This great change happened on the supply side also altered the de-

mand side of the industry. DSP can now directly buy supplies from exchanges rather than

accessing the supplies via SSP. As a result, DSP should provide access to supplies via

Ad Exchange and their key expertise should be bidding intelligently to win impressions

on Ad Exchange. In this case, Real Time Bidding strategy becomes an effective way to
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accurately predict the supply as well as win it at a low price if this strategy can be notated

as some mathematical models or algorithms.

In order to show the markets in an integral way, figure 1 shows the mechanisms of

how RTB works with SSP and DSP. Figure 2 shows the companies that are doing these

kinds of business in this industry. The digital Ads market has been growing rapidly in

the past few years and we can see that many hi-tech and algorithm companies are playing

crucial roles in this field. Therefore, I believe, the optimization of RTB strategy is a topic

that is worth being discussed.

Figure 1: Mechanisms of How RTB Works with SSP and DSP

Figure 2: Industry Development in China
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4 Literature Review

According to the latest IAB Internet Advertising Revenue Report released by the in-

dustry trade group and prepared by PwC US, digital advertising revenues in the United

States for the first half of 2017 surged to an all-time high of $40.1 billion. The develop-

ment is so rapid that a 40 percent increase from $15.5 billion in half-year 2016 and far

surpassing the $8.2 billion reported just two years ago in HY 2015.

As discussed in the paper written by Balseiro et al.(2014), traditionally, an advertiser

would directly buy placements and sign contracts with the publisher, i.e. the owner of the

digital space. And most of the deals would be reserved over a specific time span. The

click-through rate would be measured as a quality of those placements. But things grad-

ually changed when Ad Exchange came. According to Muthukrishnan (2017), another

mechanism has began to form: an auction will run as soon as the publisher post an ad

slot. Advertisers will post bids and the winner will successfully display their advertise-

ments. All the above happens as soon as a user opens an app or a web page and he/she is

waiting for the content to be loaded.

Therefore, under such situation, the supply of impressions is uncertain and may be var-

ied over time compared to the classical auction models. New methodologies are needed

to conquer these difficulties. Many scholars have addressed various approaches to pro-

vide new methods to solve this problem. For example, Ghosh et al.(2009) proposed a

practical bidding mechanism to achieve reasonable performance by creating the random-

ized bidding rules. Turner (2012) focuses on the allocation of guaranteed targeted dis-

play advertising by proposing a quadratic objective optimization formulation and algo-

rithms.Another scholar, Chen(2017), has complemented more by introducing the dynam-
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ically intertwined incentives of the publisher because of the instantaneous benefit and the

threat of contractual penalty for nondelivery.

As mentioned in a survey written by Korula et al. (2016), there are 3 important el-

ements in such kind of problems: targeting, volume and price. Moreover, inspired by 2

recent studies, the main work this thesis has done is to formulate this strategy to be a non-

linear programming problem which contains the key elements mentioned above. Ciocan

and Farias (2012) consider a class of dynamic allocation problems with unknown and

volatile demand. We refered to their methods of modeling the uncertain demand and ad-

justed it to some extent to better match our whole model. Aseri et al. (2017) has modeled

this question into a quite decent and clear way.

The construction of our model is mainly inspired by their ways of separating the prob-

lem into a static one and a dynamic one. The creative and initial parts we added on are:

First, we simplified the location variable by changing it to be a vector which contains all

the info (graphical, preference, age, etc.) of every potential user. This would make our

targeting to be more specific and efficient. Secondly, we added the CTR (click through

rate) into the model because we believe this would be a good measure which reflect the

quality of each bidding and might be useful if we could record it.
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5 Quantification of relevant variables

5.1 Supply Side

The Ad Exchange runs a real-time second-price auction every time an impression

comes. There are multiple exogenous advertisers and DSPs participating in the auctions of

every space that Ad Exchange offers. First, we should quantify the impressions that meet

the advertiser’s targeting criterion (such geographic location, age group of the reviewer,

tastes, and interests obtained from her browsing history) as W = [w1, w2, ..., wn], which

is a multi-dimensional vector stores various features of a specific user. In order to ensure

that all the impressions would arrive separately, we set 2 level units of time to cut every

slot of time. S =
{

1, 2, ...s
}

represents every day, I =
{

1, 2, ...i
}

represents every time

block in which there would be only one impression comes in each i. Finally, we set

T =
{

1, 2, ...t
}

where t = s · i.

Suppose impressions arrive at the Ad Exchange according to a Bernoulli Distribution

with parameter qi,w, which denotes that the probability of an impression from W arrives

for t ∈ Ts,i. Similarly, we use gi,w to denote the probability of an impression fromW won

at t ∈ Ts,i and will be clicked by the user.

5.2 Demand Side

As discussed in the previous section, DSP now faces a situation where it has made firm

delivery commitments to customers but its supply of impressions is uncertain. Therefore,

we would like to quantify the supply using the mathematical knowledge in Theory of

Probabilities. We consider that over a fixed time horizon
[
0, T

]
. The advertiser signed a

contract with a DSP including 4 variables (T,Mc,M
click
c , R) where T refers to the length
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of time,Mc refers to the targeting number of impressions for a specific campaign c,M click
c

refers to the targeting number of click-throughs of these impressions, and R refers to the

budget that the adviser is willing to pay. Here, campaign c ∈ C, which C =
{

1, 2, ..., c
}

and c = 2w − 1 for w ∈ W . Thus, at time T , the DSP needs to win Mc impressions,

M click
c click-throughs to get revenue R from the advertiser. Given other constraints and

conditions, we would like to optimize his RTB strategy by involving these 4 main vari-

ables.

In brief, here is a summary of all the crucial variables:

10



6 Modeling and Optimization

6.1 General Settings

As discussed previously, the impressions are auctioned in real time on an Ad Ex-

change. The platform, and also other advertisers or companies acting on behalf of ad-

vertisers, bid for these impressions. The highest bidder wins the impression and follows

the rules in a second-price auction. Clearly, the higher the bid, the greater the probabil-

ity of winning an impression. Therefore, a win curve can be easily set as a function

pi,w(b) : [0, bmaxi,w ]→ [0, 1] for w ∈ W, i ∈ I , which indicates the probability of winning

that impression by bidding an amount b. As a result, the inverse function of thewin curve

can be called as a bid curve: bi,w(x) : [0, 1] → [0, bmaxi,w ] for w ∈ W, i ∈ I , where x is

the winning probability. After all these settings, it is clear that the subjective function in

this optimization problem would be: fi,w(x) = x · bi,w(x), which shows the whole cost,

i.e. the winning probability for an impression comes from w ∈ W , time block i ∈ I ,

and then times the expected cost. For any time period in T , let jt,c denote the number of

impressions won by campaign c before the start of time slot t. Jt then is the set of all

feasible state vectors in time slot t. Similarly, let kt,c denote the number of click-throughs

reached till time slot t for campaign c. Now we design a bidding strategy π to maximize

the DSPs’ expected profit subject to the 4 variables (T,Mc,M
click
c , R).

To be more specific, xπt,w(jt) is the winning probability for this specific impression.

Because we have considered the fact that a DSP would have multiple clients, the allocation

should also be a variable built in our model. Consequently, we set yπt,w,c(jt) to be the

allocated probability to campaign c given that policy π has won this impression. We note

that xπt,w(jt) = Σc∈C y
π
t,w,c(jt), for ∀ jt ∈ Jt.
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Since our model will involve various probabilities, we use a standard and convenient

mathematical device here. We use a set of U [0, 1] random variables to fit the probabilities

in. Then, we would have 3 separate U : U imp
t , Uwin

t , Ualloc
t . U imp

t = 1 only when the im-

pression comes from the specific w and take value 0 at other times. Then we say that an

impression is won by policy π if and only if Uwin
t ≤ xπt,w(jt). Further, if this impression is

won, then it is allocated to campaign c ifUalloc
t ∈ [Σc−1

ĉ=1y
π
t,w,ĉ(jt)/x

π
t,w(jt), Σc

ĉ=1y
π
t,w,ĉ(jt)/x

π
t,w(jt)].

All these relations would be used as our constraints.

Up to now, all the preparations are done and we can use all the parameters discussed

above to generate a convex problem to optimize.

6.2 Analysis of a Static Model

We first deal with a static model in which it is impossible that many impressions

have been won at early periods of T and then the it may start bidding low on subsequent

impressions. We denote this situation as Pstatic(M,α,M click, αclick). Here, α and αclick,

representing the probabilities of completing the requirements from clients, are values that

are close to one. Then, we quantify our objective function as fπ:

fπ = Σs∈S Σi∈I Σw∈WEUt−1 [qi,wfi,w(xπt,w(jπt (Ut−1)))]

Therefore, the problem Pstatic(M,α,M click, αclick) can be written as follows:

[Pstatic(M,α,M click, αclick)] :

minfπ (1)

12



subject to

Σc∈C y
π
t,w,c(j) = xπt,w(j), ∀t ∈ T, j ∈ Jt, w ∈ W (2)

jπt+1,c(Ut) = jπt,c(Ut−1) + Σx∈W1(U imp
t = w) 1(Uwin

t ≤ xπt,w(jπt (Ut−1)))

× 1

(
Σc−1
ĉ=1y

π
t,w,ĉ(j

π
t (Ut−1))

xπt,w(jt(π(Ut−1)))
< Ualloc

t ≤
Σc
ĉ=1y

π
t,w,ĉ(j

π
t (Ut−1))

xπt,w(jt(π(Ut−1)))

)
,∀t ∈ T, c ∈ C, ut ∈ Ut

(3)

P[jπtc+1(Utc) ≥Mc] ≥ α ∀c ∈ C (4)

kπt+1,c(Ut) = jπt,c(Ut−1) + Σx∈W1(U imp
t = w) 1(Uwin

t ≤ xπt,w(jπt (Ut−1)))

× 1

(
Σc−1
ĉ=1y

π
t,w,ĉ(j

π
t (Ut−1))

xπt,w(jt(π(Ut−1)))
< Ualloc

t ≤
Σc
ĉ=1y

π
t,w,ĉ(j

π
t (Ut−1))

xπt,w(jt(π(Ut−1)))

)
1(U click

t = w),

∀t ∈ T, c ∈ C, ut ∈ Ut (5)

P[kπtc+1(Utc) ≥M click
c ] ≥ αclick ∀c ∈ C (6)

6.3 A Relaxation of the Static Model

We here introduce a new variable βc ≥ 0, which represents a certain number of im-

pressions, in expectation for each campaign c ∈ C. Similarly, we have another variable

βclickc which represents the ideal numbers of click-throughs. Formally, we denote a new

problem by:

PE
static(β)

Therefore, the new problem would be written as follows:
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PE
static(β):



minfπ

subject to (2)-(6)

E[jπt+1,c(Utc)] ≥ βc, ∀c ∈ C

E[kπtc+1(Utc) ≥M click
c ] ≥ βclickc ∀c ∈ C

Then, we can apply the Markov’s inequality: P (X ≥ a) ≤ E(X)
a

to find a suitable β

and write it into the formula. Since P[jπtc+1(Utc) ≥ Mc] ≥ α ∀c ∈ C, it is intuitive to

rewrite the formula: E[jπt+1,c(Utc)] ≥ αMc,∀c ∈ C. Similarly, we have another formula

to rewrite: E[kπt+1,c(Utc)] ≥ αclickM click,∀c ∈ C.

As a result, PE
static(αMc) is a relaxation of problem Pstatic(M,α,M click, αclick). We

can then begin to solve PE
static(β) for any β.
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7 A Near-Optimal Solution of the Static Model

7.1 Lower Bound of the Required Impressions

Now that we have constructed a static model here, we can simply set a linear relation-

ship between βc and βclickc by multiplying a click-through rate gt,w for every t in T , every

w in W (mentioned before in Section 2.1). Our main approach is that we want to find

a lower bound which defines the minimum required amount of Ads, thus we can find an

upper bound for the maximum cost paid by DSPs.

First, we noticed that the number of impressions won for each campaign c over every

time slot has a binomial distribution. Further, given that large number of time slots over

the whole time span, the total number of impressions assigned to campaign c is approx-

imately normally distributed with mean ΣKc
s=1Σi∈I p̂

β
s,i,c and variance ΣKc

s=1Σi∈I p̂
β
s,i,c(1 −

p̂βs,i,c). Therefore, we can have the formula which represent the relationship between the

probability with the required numbers of Ads:

ΣKc
s=1Σi∈I p̂

β
s,i,c − zα(ΣKc

s=1Σi∈I p̂
β
s,i,c(1− p̂

β
s,i,c))

1/2 = Mc, c ∈ C

Since the probability that an impression arrives in any location in a given time slot is

extremely small, the value of 1 − p̂βs,i,c ≈ 1 for any β. Hence, the equation above would

be deducted as:

ΣKc
s=1Σi∈I p̂

β
s,i,c − zα(ΣKc

s=1Σi∈I p̂
β
s,i,c)

1/2 = Mc, c ∈ C

From the quantification of different variables, we can see that, for the optimal solution,

ΣKc
s=1Σi∈I p̂

β
s,i,c = ΣKc

s=1Σi∈IΣw∈Wcqi,wŷ
∗
s,i,w,c(β) = βc. Up until now, the equation has been

deducted to:

βc − zαβ1/2
c = Mc

15



By solving the above formula, we obtain that βc = (2Mc+z
2
a+
√

(2Mc + z2
a)

2 − 4M2
c )/2.

Because α ≈ 1 in our settings, hence βc = Mc + za
√
Mc. This form reminds us of the

news-vendor model, in which case, zα
√
Mc is the safety stock for campaign c. This for-

mula defines the lower bound of the required impressions we should achieve in our model.

Practically, for a campaign c ∈ C, the ratio βc
αMc

implies the percentage of the ad-

ditional number of impressions needed by our policy. Let γ = maxc∈C [β∗c/(αMc)] =

maxc∈C [(1/α) · (1 + zα/
√
Mc)]. Therefore, γ is the maximum additional percentage of

impressions needed by our policy. For example, if γ = 1.02, it means our model would

acquire at most 2 percentage additional impressions.

7.2 Upper Bound of the Estimated Cost

In order to find the upper bound of the estimated cost generated by the constraints

above, we define a new variable called ψi,l(x), where:

ψi,w(x) =
xf ′i,w(x)

fi,w(x)
,∀i ∈ I, w ∈ W,x ∈ [0, 1]

The realistic meanings are as follows: The numerator of the expression on the right-

hand side of the above equation is the marginal expected cost at win probability x, while

the denominator is the marginal expected cost at win probability x if the expected cost

function were a linear function with a slope fi,w(x)/x. In other words, ψi,w(x) us a

measure of how fast the expected cost function changes relative to a (hypothetical) linear

cost function.

Since α ∈ [0.95, 0.99] andMc is of the order of 100,000, we have γxmax � 1. We pro-

ceed under the assumption that γxmax � 1, and define ψ̄ = maxx∈[0,γxmax]maxi∈I,w∈wψi,w(x).

Deducting from the definition above, ψ̄ is the maximum rate at which the expected cost

function increases relative to a linear cost function.
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Assume that ψ̄ < γ/(γ − 1). This assumption is easily satisfied in realistic problem

instances. For example, in the discussion in "Procurement Policies for Mobile-Promotion

Platforms" (Aseri et al. 7) , we will see that ψ̄ is an order of magnitude smaller than

γ/(γ − 1). As a result, we have found the upper bound of the cost:

fπ(β∗)

Opt(M,α)
≤ 1

1− ((γ − 1)/γ)ψ̄

Now we present a real life example: Let Mc = 150, 000 for all c, xmax = 0.05 and α

= 0.99. Then, γ = 1.016. Let ψ̄ = 1.4. Then, the bound 1
1−((γ−1)/γ)ψ̄

= 1.0225. From our

model, this indicates that the total cost is at most 2.25 percentage higher than that of the

optimal policy for Pstatic(M,α).

7.3 The Role of Click-Through Rate

As the CTR is implemented in the same way as the winning rate, we can easily apply

the same logic to find the lower bound of the required click-throughs as well as the upper

bound of the estimated cost.

Therefore, βclickc = M click
c + zαclick

√
M click

c represents the lower bound of the re-

quired click-throughs we should achieve in our model. As a result, in order to check the

realistic application, let γclick = maxc∈C [β∗clickc /(αclickM click
c )] = maxc∈C [(1/αclick) ·

(1 + zαclick/
√
M click

c )]. Therefore, γclick is the maximum additional percentage of click-

throughs needed by our policy. For example, if γclick = 1.05, it means our model would

acquire at most 5 percentage additional click-throughs.

Next, let us find the upper bound of the cost if we need to achieve a certain number of

click-throughs in a advertising campaign. By using the same methodology, we know that

the ψ̄ = maxx∈[0,γxmax]maxi∈I,w∈wψi,w(x). Hence, here is the upper bound of the cost for
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the required click-throughs:

fπ(β∗)

Opt(M click, αclick)
≤ 1

1− ((γclick − 1)/γclick)ψ̄

This upper bound could present a range that can guide the DSP sides’ decisions when

signing contracts with their clients.

Moreover, with the results of two groups of variables: βc, βclickc , 1
1−((γ−1)/γ)ψ̄

and

1
1−((γclick−1)/γ)clickψ̄

, DSP can consider more deeply about the profitability of a certain

advertising campaign and can also make much wiser decisions in allocating any won

impression. For example, empirically, they should first consider those advertising cam-

paigns which have lower 1
1−((γ−1)/γ)ψ̄

and 1
1−((γclick−1)/γ)clickψ̄

because when DSPs finishes

the campaign requirements, their cost would not be too higher and it would be better and

faster for them to cover their original cost.
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8 Discussion and Potential Improvements

As this thesis is mainly a theoretical approach, what is the value of it and how can it

be referenced by this industry?

As discussed before, digital advertising industry is a field which embeds huge poten-

tial, and is already developing rapidly thanks to some advanced technology. Recently,

there are even some papers discussing the application of deep reinforcement learning in

real-time bidding. For example, Zhao et al. (2018) have discussed to apply deep reinforce-

ment learning for sponsored search real-time bidding and Cai et al. (2017) also applied

reinforcement learning in developing more advanced real-time bidding strategies. As a

result, I think in the future, more display advertising strategy will rely much on such kind

of artificial intelligence instead of some classical mathematical modeling methodologies.

However, digital advertising is still a relatively newborn industry. It would be costly

for the machine learning technique to realize its functions because of the scarcity of avail-

able data. Under such circumstances, the mathematical approach can show its predictive

power through its rigorous logic and scientific structure. As this thesis has shown so far,

we get a range to control the cost for a set of campaigns starting from a optimization

problem.

But still, we want to discuss the disadvantages of this thesis. It is not a completed

one because we do not have a chance to test our models by using real-world datasets.

Although we presented the realistic meaning of some variables we have set, it should be

tested via a real digital advertising data sets to check whether the market also works in

way as we assumed.

I think, in the future, other mathematical or engineering knowledge should be focused
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on finding optimal solutions to some questions such as allocations of different impressions

onto various advertisement campaigns, etc. I believe such type of strategic development

can help more DSPs to fulfill their advertising requirements much efficiently even for a

huge set of clients.
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